حساب دیفرانسیل و انتگرال
اسلاید 1: حساب دیفرانسیل و انتگرال و تابع سیده فاطمه کاظمی
اسلاید 2: ;
اسلاید 3:
اسلاید 4: تاریخچه حساب دیفرانسیل و انتگرال در آغاز برای برآورده کردن نیازهای دانشمندان قرن 17 ابداع شد.البته لازم به ذکر است ریشه های این علم را میتوان تا هندسه کلاسیک یونانی میتوان ردیابی کرد حساب دیفرانسیل و انتگرال به دانشمندان امکان می داد شیب خمها را تعریف کنند، زاویه آتشباری توپ را برای حصول بیشترین برد بدست آورند و زمانهایی که سیارات نزدیکترین و دورترین فاصله را از هم دارند،پیش بینی کنند. پیش از پیشرفتهای ریاضی که به کشف بزرگ آیزاک نیوتن و لایب نیتس انجامید،یوهانس کپلر منجم با بیست سال تفکر،ثبت اطلاعات،و انجام محاسباث سه قانون حرکت سیارات را کشف کرد:
اسلاید 5: 1.هر سیاره در مداری بیضی شکل حرکث میکندکه یک کانونش در خورشید است . 2.خط واصل بین خورشید و ستاره در مدتهای مساوی مساحات مساوی را طی میکنند. قانون اول کپلر
اسلاید 6: قانون دوم کپلر 3.مربع گردش هر سیاره به دور خورشید،متناسب است با مکعب فاصله متوسط آن سیاره از خورشید ولی استنتاج قوانین کپلر از قوانین حرکت نیوتن با استفاده از حساب دیفرانسیل و انتگرال کار ساده ای است.
اسلاید 7: قلمرو امروزی حساب دیفرانسیل و انتگرال امروز حساب دیفرانسیل و انتگرال در آنالیز ریاضی قلمرو واقعا گسترده ای دارد و فیزیکدانان و ریاضیدانان که اول بار این موضوع را ابداع کردند مسلما شگفت زده و شادمان می شدند اگر می دیدند که این موضوع چه انبوهی از مسائل را حل میکند. امروزه اقتصاددانان از حساب دیفرانسیل و انتگرال برای پیش بینی گرایشهای کلی اقتصادی استفاده می کنند. اقیانوس شناسان برای فرمول بندی نظریه هایی درباره جریانهای دریایی بهره میگیرند،و هواشناسان آن را برای توصیف جریان هوای جو به کار میگیرند،دانشمندان علوم فضایی آن را برای طراحی موشکها به کار میبرند.روانشناسان از آن برای درک ثوهمات بصری استفاده می کنندو... به طور خلاصه حساب دیفرانسیل و انتگرال علمی است که درتمام علوم امروزی کاربرد بسزایی دارد.
اسلاید 8: بزرگان این علم این علم عمدتا کار دانشمندان قرن هفدهم اسث. از میان این دانشمندان میتوان به رنه دکات ،کاوالیری،فرما و جیمز گرگوری اشاره کرد. پیشرفت حساب دیفرانسیل و انتگرال در قرن 18 با سرعت زیادی ادامه یافت، در زمره مهمترین افرادی که در این زمینه سهم داشتند میتوان به برادران برنولی اشاره کرد.در واقع خانواده برنولی همان نقشی را در ریاضیات داشتند که خانواده باخ در موسیقی ایفا کردند. تکمیل ساختار منطقی روشهای حساب دیفرانسیل و انتگرال را ریاضیدانان قرن 19 از جمله لوئی کوشی و کارل وایرشتراس بر عهده گرفتند. مطلب را با سخنی از جان فون نویمان که از ریاضیدانان بزرگ قرن بیستم است به پایان میبریم « حساب دیفرانسیل و انتگرال نخستین دستاورد ریاضیات نوین است و درک اهمیت آن کار آسانی نیست. به عقیده من،این حساب روشنتر از هر مبحث دیگری مرحله آغازی ریاضیات نوین را توصیف می کند؛و نظام آنالیز ریاضی، که توسیع منطقی آن است،هنوز بزرگترین پیشرفت فنی در تفکر دقیق به شمار می آید.»
اسلاید 9: در حساب دیفرانسیل و انتگرال از انتگرال یک تابع برای عمومیت دادن به محاسبه مساحت ، حجم ، جرم یک تابع استفاده می شود. فرایند پیدا کردن جواب انتگرال را انتگرال گیری گویند.البته تعاریف متعددی برای انتگرال گیری وجود دارد ولی در هر حال جواب مشابه ای از این تعاریف بدست می آید. انتگرال یک تابع مثبت پیوسته در بازه (a,b) در واقع پیدا کردن مساحت بین خطوط x=0 , x=10 و خم منفی F است . پس انتگرال F بین a و b در واقع مساحت زیر نمودار است. اولین بار لایب نیتس نماد استانداری برای انتگرال معرفی کرد و به عنوان مثال انتگرال f بین a و b رابه صورت نشان می دهند علامت ،انتگرال گیری از تابع f را نشان می دهند ،aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال پذیر است و dx نمادی برای متغیر انتگرال گیری است.
اسلاید 10: از لحاظ تاریخی dx یک کمیت بی نهایت کوچک را نشان می دهد. هر چند در تئوریهای جدید، انتگرال گیری بر پایه متفاوتی پایه گذاری شده است به عنوان مثال تابع f را بین x=0 تا x=10 در نظر بگیرید ،مساحت زیر نمودار در واقع مساحت مستطیل خواهدبود که بین x=0 ،x=10 ،y=0 ،y=3 محصور شده است یعنی دارای طول 10 و عرض 3است پس مساحت آن برابر 30 خواهد بود. تابعی دارای انتگرال باشد به آن انتگرال پذیر گویند و تابعی که از انتگرال گیری از یک تابع حاصل می شود تابع اولیه گویند . اگر انتگرال گیری از تابع در یک محدوده خاص باشند به آن انتگرال معین گویند که نتیجه آن یک عدد است ولی اگر محدوده آن مشخص نباشد به آن انتگرال نامعین گویند.
اسلاید 11: انتگرال یک تابع مساحت زیر نمودار آن تابع است.
اسلاید 12: محاسبه انتگرال اکثر روش های اساسی حل انتگرال بر پایه قضیه اساسی حساب دیفرانسیل و انتگرال بنا نهاده شده است که بر طبق آن داریم: - 1تابعf را در بازه (a,b) در نظر می گیریم . - 2پاد مشتق f را پیدا می کنیم که تابعی است مانند f 3 -قضیه اساسی حساب دیفرانسیل و انتگرال را در نظر می گیریم:
اسلاید 13: بنابراین مقدار انتگرال ما برابر خواهد بود. نکته : انتگرال واقعاً پاد مشتق نیست (یک عدد است) اما به ما اجازه می دهد تا از پاد مشتق برای محاسبه مقدار انتگرال استفاده کنیم
اسلاید 14: معمولاً پیدا کردن پاد مشتق تابع f کار ساده ای نیست و نیاز به استفاده از تکنیکهای انتگرالگیری دارد این تکنیکها عبارتند از : ● انتگرال گیری بوسیله تغییر متغیر ● انتگرال گیری جزء به جزء ● انتگرال گیری با تغییر متغیر مثلثاتی ● انتگرال گیری بوسیله تجزیه کسرها روش هایی دیگر نیز وجود دارد که برای محاسبه انتگرالهای معین به کار می رود همچنین می توان بعضی از انتگرال ها با ترفند هایی حل کرد برای مثال می توانید به انتگرال گاوسی مراجعه کنید .
اسلاید 15:
اسلاید 16: تقریب انتگرالهای معینانتگرال هایی معین ممکن است با استفاده از روش های انتگرال گیری عددی ،تخمین زده شوند.یکی از عمومی ترین روش ها ،روش مستطیلی نامیده می شود در این روش ناحیه زیر نمودار تابع به یک سری مستطیل تبدیل شده و جمع مساحت آنها نشان دهنده مقدار تقریبی انتگرال است. از دیگر روش هایی معروف برای تخمین مقدار انتگرال روش سیمپسون و روش ذوزنقه ای است. اگر چه روش های عددی مقدار دقیق انتگرال را به ما نمی دهند ولی در بعضی از مواقع که انتگرال تابعی قابل حل نیست یا حل آن مشکل است کمک زیادی به ما می کند .
اسلاید 17: محاسبه سطح زیر نمودار بوسیله مستطیل هایی زیر نمودار. هر چه قدرعرض مستطیل ها کوچک میشوندمقدار دقیق تری از مقدار انتگرال بدست میآید
اسلاید 18: تعریف های انتگرال از مهم ترین تعاریف در انتگرال می توان از انتگرال ریمان و انتگرال لبسکی(lebesgue) است. انتگرال ریمان بوسیله برنهارد ریمان در سال 1854 ارئه شد که تعریف دقیقی را از انتگرال ارائه می داد تعریف دیگر را هنری لبسکی ارائه داد که طبق این تعریف شرایط تعویض پذیری حد و انتگرال با شرط مساوی ماندن عبارت، ارائه می کرد. از دیگر تعاریف ارائه شده در زمینه انتگرال میتوان به انتگرال riemann-stieltjes اشاره کرد. پس به طور خلاصه سه تعریف زیر از مهمترین تعاریف انتگرال میباشند:
اسلاید 19: انتگرال گیری یکی از دو عامل اساسی در حسابان میباشد و از آنجائیکه برخلاف مشتق گیری، غیر-جزیی می باشد، جداول انتگرالهای شناخته شده اغلب مفید می باشند. این صفحه و صفحه بعد عمل معکوس مشتق گیری های معمول را فهرست نموده است؛ ما از C برای یک مقدار ثابت دلخواه در انتگرال گیری استفاده مینماییم، که در صورتی قابل تعیین خواهد بود که اطلاعی از مقدار انتگرال در نقطهای داشته باشیم. لذا هر تابع تعداد نامحدودی انتگرال دارد.
اسلاید 20:
اسلاید 21:
اسلاید 22: انتگرالهای معین توابعی وجود دارند که عمل معکوس مشتق گیری را برای آن توابع نمی توان در شکل بسته نمایش داد. بهرحال، مقادیر انتگرالهای محدود این گونه توابع را میتوان در فاصله های متعارف محاسبه نمود. ذیلا، تعداد کمی از انتگرالهای محدود ارائه شدهاند.
اسلاید 23: تابع
اسلاید 24: در ریاضیات ، تابع رابطهای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعهای دیگر (شاید یک عضو از مجموعه) را بیان میکند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخههای ریاضی به حساب میآید. مفاهیم تابع ، نگاشت و تبدیل معمولاً مفاهیم مشابهای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل میشوند. در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید میکند معکوس این مطلب را در تعریف تابع بکار نمیبرند. یعنی در واقع یک تابع میتواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولید کند. برای مثال با فرض y=x2 با ورودیهای 5- و 5 خروجی یکسان 25 را خواهیم داشت. در بیان ریاضی تابع رابطهای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.
اسلاید 25: به عنوان مثال تابع f(x)=x2 بیان میکند که ارزش تابع برابر است با مربع هر عددی مانند x
اسلاید 26: در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی میکنند. با این شرط که هرگاه دو زوج با مولفههای اول یکسان در این رابطه موجود باشند آنگاه مولفههای دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه مینامند. مفهوم تابع اساسی اکثر شاخههای ریاضی و علوم محاسباتی میباشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم. فقط کافیست این مطلب را بدانیم که برای هر ورودی تنها یک خروجی ایجاد میشود در چنین حالتی تابع را میتوان به عنوان یک جعبه سیاه در نظر گرفت که برای هر ورودی یک خروجی تولید میکند. همچنین لزومی ندارد که ورودی یک تابع ، عدد و یا مجموعه باشد. یعنی ورودی تابع را میتوان هر چیزی دلخواه در نظر گرفت البته با توجه به تعریف تابع و این مطلبی است که ریاضیدانان در همه جا از آن بهره میبرند.
اسلاید 27: تاریخچه تابع نظریه مدرن توابع ریاضی بوسیله ریاضیدان بزرگ لایب نیتر مطرح شد همچنین نمایش تابع بوسیله نمادهای (y=f(x توسط لئونارد اویلر در قرن 18 اختراع گردید، ولی نظریه ابتدایی توابع به عنوان عملکرهایی که برای هر ورودی یک خروجی تولید کند توسط جوزف فوریه بیان شد. برای مثال در آن زمان فوریه ثابت کرد که هر تابع ریاضی سری فوریه دارد.چیزی که ریاضیدانان ما قبل اوبه چنین موردی دست نیافته بودند، البته موضوع مهمی که قابل ذکر است آنست که نظریه توابع تا قبل از بوجود آمدن نظریه مجموعهها در قرن 19 پایه و اساس محکمی نداشت. بیان یک تابع اغلب برای مبتدیها با کمی ابهام همراه است، مثلا برای توابع کلمه x را به عنوان ورودی و y را به عنوان خروجی در نظر میگیرند ولی در بعضی جاها y,x را عوض میکنند.
اسلاید 28: ورودی یک تابع را اغلب بوسیله x نمایش میدهند. ولی زمانی که ورودی تابع اعداد صحیح باشد. آنرا با x اگر زمان باشد آنرا با t ، و اگر عدد مختلط باشد آنرا با z نمایش میدهند. البته اینها مباحثی هستند که ریاضیدانان برای فهم اینکه تابع بر چه نوع اشیایی اثر میکند بکار میرود. واژه قدیمی آرگومان قبلا به جای ورودی بکار میرفت. همچنین خروجی یک تابع را اغلب با y نمایش میدهند در بیشتر موارد به جای f(x) , y گفته میشود. به جای خروجی تابع نیز کلمه مقدار تابع بکار میرود. خروجی تابع اغلب با y نمایش داده میشود. ولی به عنوان مثال زمانی که ورودی تابع اعداد مختلط باشد، خروجی آنرا با W نمایش میدهیم. (W = f(z
اسلاید 29: تعریف روی مجموعهها یک تابع رابطهای منحصر به فرد است که یک عضو از مجموعهای را با اعضای مجموعهای دیگر مرتبط میکند. تمام روابط موجود بین دو مجموعه نمیتواند یک تابع باشد برای روشن شدن موضوع ، مثالهایی در زیر ذکر میکنیم: این رابطه یک تابع نیست چون در آن عنصر 3، با دو عنصر ارتباط دارد. که این با تعریف تابع متناقص است چون برای یک عنصر از مجموعه، دو عنصر در مجموعه موجود است این رابطه یک تابع یک به یک است. چون به ازای هر x یک y وجود دارد.
اسلاید 30: تعریف ساخت یافته تابع بطور ساخت یافته یک تابع از مجموعه x به مجموعه y بصورت f:x→y نوشته میشود و به صورت سه تایی مرتب ( (x,y,G(f) نمایش داده میشود. بطوری که (G(f زیر مجموعهای از حاصلضرب کارتزین xy میباشد. با این شرط که به ازای هر x در X یک Y متعلق به Y نسبت داد شود. با این شرط زوج مرتب (x,y) را در داخل (G(f میپذیریم. در این حالت نیز X را به عنوان دامنه f و y را به عنوان برد fو (G(f را به عنوان نمودار و یا گراف تابع F در نظر میگیرند.
اسلاید 31: توابع میتوانند: زوج یا فرد باشند. پیوسته یا ناپیوسته باشند. حقیقی یا مختلط باشند. اسکالر یا برداری باشند. خواص توابع
اسلاید 32: توابع چند متغیره یک تابع ممکن است بیشتر از یک متغیر داشته باشد برای مثال یک تابع از f است که دارای سه پارامتر x,y,z است که یک ارزش را برای تابع تولید میکنند. از توابع چند متغیره میتوان به قانون جاذبه نیوتن اشاره کرد که در آن دو جرم با متغیر و و نیز یک متغیر برای فاصله هر جرم به نام در آن وجود دارد
اسلاید 33: مفهوم تایع یکی از مهم ترین مفاهیم علم ریاضی بوده و به همان اندازه در ریاضی اهمیت دارد که مفهوم مجموعه دارد. اغلب، می گویند تابع، کمیت متغیری است که از کمیت متغیر دیگر تبعیت می کند. برای توزیع معمولی، مانندY=sinx ,y=x2 , y=a+bx : والی آخر، این تعریف کاملا مناسب می باشد. ممکن است اگر توابع دیگری، مانند: y=sin2x+cos2x را در نظر بگیریم، می بینیم که مقادیر آن تابعه دیگر تغییر نمی کند و بنابراین دیگر کمیت متغیری که از کمیت x تبعیت کند، وجود نداد. تعریف تایع: تناظری که به هر عنصر x از یک مجموعه x فقط و فقط یک عنصر y از یک مجموعه y رانسبت را دهد، تایع گویند. توابع را با حروف f یا حروف کوچک خطی لاتین نشان می دهیم.
اسلاید 34: قلمرو و برد تابعمجموعه x را قلمرو تابع و مجموعه y را برد تابع f می نامند. تابعf را از مجموعه x به مجموعه y را معمولا به صورت f:x→y y=f(x) نشان می دهند. مثال هایی از تابع: تبدیل درجه فارنهایت به سانتیگراد را در نظر می گیریم برای هر عدد حقیقی x، درجه فارنهایت معادل است با درجه سانتیگراد. فرض می کنیم y,x هر دو عدد مجموعه اعداد حقیقی باشند، در نتیجه این عمل، به هر عنصر x از مجموعه Xعنصر یگانه f(x) از مجموعه y را نظیر می کند. اگر داشته باشیم: پس نتیجه می گیریم برای هر مقدار x یک مقدار x از منحصر بفردی y موجود است. f(32)=0 f(68)= 0 f(212)=0
اسلاید 35: گراف تابع: در تابع f:X→Y مجموعه تمامی زوج هائی که اجزای اول آن ها را عناصر مجموعه X و اجزای دوم آن ها را تصویر عناصر مجموعه X تشکیل می دهند، گراف تابع خواهد بود. مفاهیم مربوط به تابع: برای توابع مفاهیمی مانند گراف تابع، ناحیه مبدا تابع، ناحیه تعریف تابع، ناحیه مقادیر تابع ظاهر می شود چون برای تابع، ناحیه تعریف با ناحیه مبدا منطبق می شود، بدین جهت برای تابع فقط ناحیه تعریف را به تنهایی به کار می برند. تابع f را با ناحیه تعریف x ناحیه مقصد y تابعی را نوع x→y می نامند.
اسلاید 36: تعبیر هندسی تابع: f تابع است اگر خطی موازی محور y ها رسم کنیم منحنی تابع را فقط و فقط در یک نقطه قطع کند. یعنی به ازای یک y فقط و فقط یک x داشته باشیم. تابع f:x→y را در نظر می گیریم. منظور از تابع f، تصویر قلمرو آن است. یعنی مجموعه f(x)={f(x) معمولا تصویر تابع f:x→y را با نماد Im(f) نشان می دهند: بنابراین داریم Im(f)=f(x) به عنوان مثال، اگر تابع f، تصویر جانور x به وسیله نور آفتاب بر روی دیوار y باشد، آنگاه تصویر تابع f یعنی Im(f) برابر سایه جانور بر روی دیوار خواهد بود. در حالت کلی، در مورد تابع دلخواه f(x), f:x→y معمولا با y براتبر نیست. مثلا درمثال تصویر جانور x به وسیله نور آفتاب بر روی دیوار y، سایه جانور یعنی f(x) معمولا نباید تمام دیوار را بپوشاند. البته امکان دارد که برای تابعی داشته باشیم. در این حالت f را تابعی از مجموعه x به روی مجموعه y یا به طور خلاصه f را پوشا می نامیم.
اسلاید 37: پایان
نقد و بررسی ها
هیچ نظری برای این پاورپوینت نوشته نشده است.