صفحه 1:
کارگاه آموزشی
نمونه برداری و آنالیز آلاینده های
خروجی دودکش
صفحه 2:
آلاینده های خروجی دودکش
" نمونه برداری ذرات خروجی دودکش
" نمونه برداری کازهای خروجی دودکش
صفحه 3:
نمونه برداری از ذرات دودکش
صفحه 4:
نمونه برداری از ذرات دودکش
تعبین محل نمونه برداری از دودکش
تعبین نقاط نمونه برداری
صفحه 5:
تعبین محل نمونه برداری
۱- اگر طول دودکش ده برابر قطر دودکش باشد محل نمونه برداری
در دو برابر قطر دودکش از بالا و هشت برابر طول دودکش از
پایین انتخاب می شودلدر دودکش های چهارگوش قطرمعادل
برابر است با 0)+را / 6۵ < 02)).
۳- اگر طول دودکش از ده برابر قطر دودکش بزرگتر بود محل نمونه
برداری باید حدفاصل دو برابر قطر دودکش از بالا و هشت برابر
قطر دودکش از پایین باشد.
۳- یک سوم طول دودکش از بالا
۴- دو برابر قطر دودکش از بالا و پنج برابر قطر دودکش از پایین
صفحه 6:
۵- در دودکش های که دارای اسکرابراند محل نمونه برداری بلیدبه
اندازه حداقل 1.5 بالاتر از انتهای اسکرابر باشد.
ع- در صورتيكه ارتفاع بالاى اسكرابر بيش از 000 باشد محل نمونه
برداری در حد فاصل 2 از پایین و 9 از بالا
۷-در دودکش های افقی. محل نمهنه برداری در فاصله همان 6 از
ورودی و 62 از خروجی بوده و در قسمت بالای دودکش انتخاب
شود.
صفحه 7:
الزامات نقطه نمونه برداری
" زاویه جریان گاز با محور دودکش کمتراز ۱۵ درجه باشد.
جربان منفی محلی وجود نداشته باشد.
حداقل فشار ۵ پاسکال باشد.
طنسبت حداکثر سرعت نبه حداقل سرعت کمتر از ۳ به ۲
باشد.
Sampling location
Flow angle <15°
Negative flow none
Pressure difference (Pitot tube) >5Pa
Ratio of max. to min. velocity oA
Straight length before the sampling plane 5 duct diameters
Straight length after the sampling plane 5 duct diameter
Number of sampling points See Table 1 and Table 2
صفحه 8:
تعیین فقاط نمونه برداری
قطر دودکش
نوع دودکش از لحاظ شکل
صفحه 9:
1. sampling line
2. sampling plane
3. orifice
00
Bo
صفحه 10:
Table 1 — Minimum number of sampling points for circular ducts
tange of duct min. no. of min. no. of sampling | min. no. of sampling
diameters sampling lines points per diameter. points per plane.
(M) (diameters)
incl excl centre} 6۱ excl
centre centre | centre
0,35-0,70
0,70-1,00
1,00-2,00
Using only one sample point may give rise to errors greater than those sp
standard,
صفحه 11:
Table 2—Minimum number of sampling points for rectangular ducts
minimum numsers of sampling
points per plane
1
4
9
18
minimum numberof side dvsions*
3
range of sampling ۵
< 009
0,09 t9 0,39
0,038 0 1,50
> 1,60
* Other side divisions may be necessary, for example ifthe longest duct side length s more than twice the length
of the shortest sde.
® Using only one sampling poini may give rie to errors greater than those specified inthis standard
صفحه 12:
MWY
۹۶
۷۸۹
۹۶
> | ام ای ام اک | < اص
صفحه 13:
Duct Diameters that Measurement Site is Upstream from Flow Disturbance 1(Distance A)
0, 1 0 25
50
Minimum Number of Traverse Points
8 8
2 3 4 5 6 7 8 9 10
Duct Diameters that Measurement Site is from Downstream to Flow Disturbance ' معمماده) 8(
Figure 1-1. Minimum number of traverse points for particulate traverses
صفحه 14:
Duct Diameters that Measurement Site is Upstream from Flow Disturbance '(Distance A)
05 15 25
50
2 3 4 5 6 7 8 9 10
Duct Diameters that Measurement Site is from Downstream to Flow Disturbance ‘(Distance B)
Figure 1-2. Minimum number of traverse points for velocity (nonparticulate) traverses
Minsmum Number of Traverse Points.
8 8
صفحه 15:
TABLE 1-1 CROSS-SECTION LAYOUT FOR RECTANGULAR STACKS
Number of tranverse points layout [Matrix
صفحه 16:
ha
ددا
bo
hos
5
7د
ls7.7
9
هدجا
وديا
كدعا
3
دم
ha
۲
in
hs.
be.
9
bs.
es.
3
13
1
همد
»هد
bes
عنما
مه
۹
كدعا
cm
هدم
هوا
1
TABLE 1-2 LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS
[Percent of stack diameter from inside wall to tranverse pofnt]
[Number of traverse points on = diameter
5 ba
2 [aa
his bs
1 hos
bs.0 ۳۹
۹ ۹
مهدا یم
bs.0 [20.6
عدن دجم
دععا Le
دجوا
دكا
bo.
هده
۳
lrraverse
lpoime
صفحه 17:
ود < فاصله نقطه نمونه برداری تا دیواره دودکش
| عنقطه نمونه برداری روی قطر دودکش
قطر دودکش 2 1
1 مقادیر ببصورتدرصد
101 تعداد نقاط نمونه برداری در یک مسیر قطر
. ز شماره نقطه نمونه برداری خاص در طول آن قطر
صفحه 18:
For circular ducts where itis necessary to increase the number 21 sampling lines (diameters| or the number of
sampling points{ecause of adverse fiow conditions for instance), the general formula 1 for calculating the
distance, ftom the duct wal along the diameter, are
60
(82)
(83)
where
incex of sampling point along the diameter
number of sampling points along each sampling line (including the centre);
number of sampling lines (diameters):
distance of point i from the duct wall
diameter of -he duct, in meters.
0
ng
x
صفحه 19:
97
۱24
221
a)
3
n=2
54
صفحه 20:
نمونه برداری ایزو کینتیک
صفحه 21:
:مواردی که باعث نمونه برداری صحیح می شود
جريان كاز در دودکش از نظر سرعت. دما و فشار پایدار و
یکنواخت باشد.
جریان گاز در دودکش موازی با نازل باشد
” شرایط ایزوکینتیک در کل مدت نمونه برداری برقرار باشد.
— نمونه ها از نقاط تعیین شده در هر خط نمونه برداری با دقت
برداشته شود.
انتخاب و طراحی مسیر نمونه برداریبه گهنه ای که متراکم
و کنداسه شدن گازها و نشتی جلوگیری شود.
” کالیبره بودن تجهیزات
صفحه 22:
:مواردی که باعث نمونه برداری صحیح می شوند
“در نمونه برداری های که فیلتر در خارج از دودکش قرار دارد
ذرات رسوب كرده قبل از فيلتر شستشو. خشك و نوزين
شود.
توزین و نمونه برداری طبق روش استاندارد انجام شود.
صفحه 23:
فیلتر
"7 راندمان بالای ۹۹/۵ برای ذرات ۰/۳ میکرومتر
عدم واکنش با گازهای موجود در جریان هوا
مقاوم به حرارت
حداکثر وزن ذرات معلق روی فیلتر معادل با وزن فیلتر است.
" فیلتر بایستی حداقل در دمای ۲۰ درجه بالاتر از دمای
دود کش خشک شود.
صفحه 24:
134 Sampling
— assemble the sampling train in the cleanest possible area, and check for possible leaks according to 7.4.2
requirements;
— preheat the relevant parts of the sampling train up to the selected filtration temperature, e.9., stack
temperature or recommended temperature of 160 °C +5 °C. Ensure that the port has been fully cleaned and
insert the probe in the duct at a selected point, avoiding contact of the entry nozzle with any deposits within the
duct. Seal the opening of the access port to minimise air in-leakage or exposure of operators to toxic gases;
— estimate the isokinetic sampling rate from preliminary stack velocity, temperature, and dry gas molecular
weight, and moisture content determinations;
— tum the sampling probe until the entry nozzle is facing upstream within + 10°. Recalculate, if necessary, the
isokinetic sampling rate based upon the flue gas velocity, temperature, and composition (if monitored) at the
sampling point. Open the shut off device, start the suction device and adjust the flow rate in order to sample
isokinetically within + 10 %;
— the sampling duration at each selected point shall be identical. The total sampling duration shall be at least
30 min and a maximum dependant upon the constant nature of the process. Each point should be sampled for
a minimum of 3 min;
صفحه 25:
— check the flue gas velocity and sampled gas volumetric flow rate at each sampling point at least every 3 min in
order to recalculate the isokinetic sampling rate, Adjust the sample train rate so that it differs from isokinetic
sampling by not more than + 10 %, it means that the isokinetic sampling index is 0,9 + 1,1;
— do not stop sampling when moving the sampling train to the next sampling point in the same sampling line. If
the flue gas velocity or temperature changes at the new sampling point, recalculate the necessary isokinetic
sampling rate and adjust the flow rate of the sampling system immediately; or, if a flow rate adjustment is
insufficient to achieve isokinetic sampling, stop the test and replace the nozzle with one appropriate to the
sampling conditions;
— af least every 3 min record the sampling time and all parameters necessary for checking both isokinetic
sampling index and stability of ducted gas flow;
— after completing sampling at all the selected points of the sampling line, close the shut off device and the
suction device, remove the sampling tran from the duct and reposition it on the next sampling line;
NOTE 1 Fora low dust concentration measurement, its generally better to use only one fiter for a complete measurement
(cumulative sampling).
صفحه 26:
8 Additional aspects
81. Thermal behaviour of particulate matter
Emitted dusts are generally thermally stable. However, on some processes the gases to be sampled contain
unstable or semi-volatile compounds (i.e. in particulate form at low temperature, in gaseous form at higher
temperature). In such a case the measured concentration depends on the fitration temperature andlor on the
tying temperature before final weighing,
Such phenomena have been reported in various industries:
— power plant equipped with desulphurisation processes, because the occurrence of hydrates;
— heavy fuel ol power plants or diesel engines, because $0, andlor organic compounds;
— lass furmaces, because the occurrence of semi volatile boron compounds has been experienced;
صفحه 27:
Differences in the measured dust concentrations (up to factor 10) have been experienced and therefore in such
cases the measured results shall be associated with a stated temperature (ie. the highest temperature sustained
by the sampled dust before weighing).
Because of the extreme variety of the situations, which may be encountered, itis not possible to find a conventional
temperature which could be relevant in all the cases.
However, since the complete trapping of volatile compounds would necessitate a very low fitration temperature
and special care during sampling, more reproducible results may be achieved if these compounds are not trapped
or are further evaporated when drying. Itis the reason why a conventional temperature of 160 °C, which leads to
void trapping of most volatile compounds and to decompose most of hydrates is generally convenient.
According to this convention, parts of the sampling train to be weighed should therefore be :
a) conditioned at 180 °C before sampling:
b) set at any temperature equal or less than 160 °C during sampling;
¢) conditioned at 160 °C after sampling.
صفحه 28:
مراحل نمونه برداری ذرات دودکش
تعیین سرعت گاز در دودکش
"انتخاب دبی و نازل مناسب جهت نمونه برداری
ایزوکینتیک
قرار دادن فیلتر وزن شده در فیلتر هلدر
"" شروع نمونه برداری و یادداشت حجم هوا از کنتور
دستگاه در ابتدا 9 انتهاى نمونه برداری
" خشک کردن و توزین فیلتر و تعیین جرم ذرات در واحد
حجم
صفحه 29:
نمونه برداری در شرایطی که فیلتر داخل دودکش قرار دارد
صفحه 30:
نمونه برداری در شرایطی که فیلتر خارج از دودکش قرار دارد
صفحه 31:
منال
۱- وزن اولبه فبلتر ۰ گرم
۲- وزن فبلتر بعد از نمونه برداری ۰ گرم
۳- اختلاف وزن ۵ گرم با ۵مبلی گرم
۴- حجم هوای برداشتی my
۵-غلظت ذرات در شرابط بهره برداری
م ا tur
m
صفحه 32:
۶-محاسبه غلظت در شرابط مرطوب:
دج
چاه
Cinw= Cis
Cinta | غلظت ذرات در شرایط نرمال مرطوب
8 : غلظت ذرات در شرايط بهره برداری
1 :دما گاز در شرایط بهره برداری 1
Ty : دمای استاندارد 180 ۲۱۳,۱۵
Py, فشار استاندارد ( ۳۵ ۱۰۱۳۲۳
2 : فشار در شرایط بهره برداری(08)
شرايط دما و فشار دودکش
7 : ۳۶۹ درجه سانتیگراد
۶ ۸۳۵۲۲۰ پاسکال
273.15+369 101323 = 460%
Cinw='°" Saas 3500
273115 83522 m
صفحه 33:
۷-محاسبه غلظت در شرابط خشک:
100
10-7 موسرل < م6
ol SoBe: Cua در شرابط نرمال خشک
if رطوبت گاز بر حسب درصد( ۲ درصد)
= 460 0
100-2
Cina 00- i
غلظت ذرات در شرابط خشک معادل ۰ مبلی گرم در مترمکعب مي باشد.
صفحه 34:
نمونه برداری گازهای دودکش
تعیین محل نمونه برداري
تعیین نقاط نمونه برداري
صفحه 35:
9.2.1 Oxygen correction factor
2 Ona
2 مر
Ose; is the reference percentage volume content of 0,;
Onneas is the measured percentage volume content of Q.
صفحه 36:
پارامترهای معمول در سنجش گازهای محیطی
اکسیژن
منوکسیدنیتروژن
" دی اکسیدنیتروژن
دی اکسیدگوگرد
کل هیدروکربن ها بر پایه متان
7 سولفیدهیدروژن
"دی اکسیدکرین
صفحه 37:
دستگاه های موجود در بازار ایران جهت
آنالیز کازهای دودکش
Lancom III —
Testo —
Varo Plus(MRU) ~
صفحه 38:
Se )0( ات۱
| Unit | Resolution | Discription of formula
با | 1 2114-0
/ 2 ۷
App = apn] 1-4
صفحه 39:
۱0000۵0000۵۵۵۵۵۵
o
is}
0
۱
So
ددم
۲ ۷ 2۱111 -
۲ 2 ۹ ضر
Butane:
نید
1 2 ۱
1 2 1 1
Tse it
صفحه 40:
تبدیل و اصلاح نتایج اندازه گیری
Converting air pollutant concentrations 1
Correcting concentrations for altitude 2
Correcting concentrations for reference conditions 3
Correcting to a dry basis 3.1
Correcting to a reference oxygen content 3.2
Correcting to a reference carbon dioxide content 3.3
صفحه 41:
تبدیل 0010 به ۱۳۵/0
1211110146
Clug! nt) = سر 10
ppnxMw 273 Mat
Cg a 89 هم
atm
1 م 2731) 2522
صفحه 42:
ميزان 00 در كار خروجى از ددکنی که Jai VN atm gla ۲۰۰ ٩6 رده رز ۱۵۰۰۰ است. مد >
برحسب git حساب كنيد
wt
اند حجم گاز را در شرایط دلهشده از نظر دما و فشار حساب میکنیم:
1 43
1
رود لمكم روهط 114
1
سبس ميزان كاز رحسب لقأل به دست موأوريم:
1000
ف
وو لور
ه تاو 119*10 <
صفحه 43:
تصحیح غلظت با توجه به ارتفاع
.
288-0۳۳
) 8 ات
Given an air poltant concentration at sea-level atmospheric pressure, the concentration at higher attudes can be obtained fom ths equation:
288-۳
)| تست
vere
h= alte, in km
P = atmospheric pressure at sea level
۱ resure at atu h
c
= Airpolfant concentration, n mass per unt volume at sea eel atmospheric pressure and specified temperate T
C= Concentration, in mass per unit volume at attudsh and specified temperature T
‘As an example, given an air pollutant concentration of 260 mg/m at sea level, calculate the equivalent pollutant concentration at an altitude of 2800 meters:
C= 260 x [{ 288 -(6.5)2.8) }/ 286] * = 260 x 0.71 = 185 mglm*
صفحه 44:
Correcting to a dy basis
Fase eigen an atc add a cut ee aoa polit هرا و
soln cocetton.Theflwng auction canbe sa to coecthe messed ‘vet bas concn oas concent
bass 9 دی
> نار
1-۲
ee
C= Concent tha prin te ents
ww fazion oy slg, oft ented eas
As avenge tas concerto lop nage hang (Dome pant er au wad aa
Canis =40=(1-1f0}= 44g.
صفحه 45:
Correcting to a reference oxygen content
Te‘lonngequion can be used coved a masue pliant concen ac aid ges wth a eased Op cone to an egal plat crcantaton nay
ented gas tha specie erence amour of"
اه سم
°°" 00-0
تا
تاه مه اجه ها و دهع
C= measured conan in a dry gas hang a measured volume Q
‘Asan example a measured NOx concentration oF46 gpm indy gas hang & valu a Opis:
por Oe 209-5]=507(+ }209-3{
‘hen coneced toa dy gos hang a speci rence cot of 3 volume
Hi:
«The measured gas concentration Cq st fst be comected toa dry basis before using te above equation,
صفحه 46:
Correcting toa reference carbon xi content bal
Tre lingequcin can ese uct meas par concern in tented gas ang amas CO crit an eq pla concen a
site وان anu COs"
0اه
و
vee
COp رل تین دراه emia comet fa =
meu concttton a dy as ang amegsuel os Cp =(
Aenean aneaud aes cnn 20 nh? dy gs asa ese le hi
۱
ihn coca tac gas aga ged wee 0, come on
صفحه 47:
EXAMPLE 1: volume correction
A volume of 20m! was drawn from a sptometer at 20°C and 700mm Hi, What was the
standard volume drawn?
Solution; Using the ideal gas equation in state | and state 2 conditions, the equation V, =
V,(P\T,/P,7;) can be applied to this case,
where /, = volume at condition 2 (standard condition to be determined)
V, = volume at condition | = 20m
P, = pressure at condition | = 700mmHg
P; = pressure at condition 2 = 760mmHg
7 = temperature at condition | = 20°C +273 = 293 K
T, = temperature at condition 2 = 25°C +273 = 298 K
Vy = (20% 100 x 298) (760 x 293) = 187m!
صفحه 48:
Conversion of ppm into ug/nt
As ai applied example, consider using the ideal gas equation to help develop a conver-
sion factor with which ppm can be converted into g/m’. Begin with the definition:
| ppm = (moles of product)/(10° moles of air)
Note: This is basically a volume measure; the definition is based on T=25°C and
P=760mmHg. Recall here that a mole of any gas will occupy a volume of 22.4 liters
when P = 760mmHg and T =0°C. The definition of ppm is based on T = 25°C; therefore,
one must calculate the new volume using Eq. (1.1)
Va[Vi = (Pi/PXD/T))
Normally, a constant pressure is assumed between conditions | and 2, such that
۲۱2۲۷۱۳/۲۸
< 2246273 +253
= 24 Sliter
صفحه 49:
Determination of Excess Air
Another type of calculation often necessary involves combustion equipment stack gas samples
obtained by Orsat analysis. Before outlining the fundamental basis of correctio:
would be well to note several aspects of the problem. The stack sampling is
leaving a combustion device contains certain levels of pollutants, which can be made to appear
smaller if the total gas quantity is increased by adding nonpoilutant gas to the stream. For
example, consider the ideal combustion of carbon monoxide with air (EPA-80/02, p. 5-4).
CO + 0.5(0; + 3.76Nz) + CO; + L88N; as)
Here, the percentage of CO, in the flue gas is
%CO; = (mole of CO;)/(mole of CO; + mole of Nz)
/ + 1.88)
34.8% by volume
‘Suppose the same mole of CO were burned with 100% excess air? The combustion reaction
now is given by
CO + O2 + 3.76N2 — COz + 0.502 + 3.76N2 «6
Now the total moles of product is given by
I mole CO; + 0.5 mole
%CO, = 1/5.26 = 19.0%
+3.76 mole Nz = 5.26 moles
by volume
Here the volume fraction of CO; was reduced by adding more air—in effect a dilution of the
products by additional air. The original 2.88 moles of flue gas also could have been diluted
through the addition of steam, a practice which is fundamentally possible since flue gas
temperatures are normally higher than dew point temperatures. Suppose one added two
moles of steam to the flue gas of Eq. (1.5):
CO, + 1.88N, +2 moles steam 7
Now there are 4.88 moles of product and the CO; percentage would be
%COz = 1/488
20.5% by volume
صفحه 50:
Clearly, the volume fraction of any gas present in the flue gas can be reduced by dilution,
either by adding air or steam. It is for this reason that combustion equipment emission
standards are written with a specified amount of excess air and based on dry flue gas, Flue
gases which indicate combustion occurred with excess air different from 50% require correc-
tion of observed concentration to that which would have been realized with 50% excess air.
Stack gas measurements are usually made with the Orsat apparatus, an absorption device
with separate chambers to remove CO;, CO, and O) from the flue gas in a manner permitting
measurement of percentage of each present on a volume basis. The device is designed so that a
dry basis measurement is realized. Excess air can be determined from the Orsat readings by
computation as follows:
Consider the complete combustion of carbon with air:
C +0) +3.76N; > CO; +3.76N> (1.8)
Here the product contains only CO: + Nz. With excess air, the reaction becomes
CH (1 + 6903 + (1 + €)3.76Nz > CO + €Os + (1 + €)3.76N3 9
where ¢ is the number of moles of excess O, in the excess air. By definition, the percent of
excess air is
eA, = (Ay — AQ/A,M100) (1.10)
= moles of actual air used in the combustion process
moles of theoretical air (stoichiometric air) used ai
combustion
Ae = excess air
‘The theoretical air is ی + 3.76N2 from Eq. (1.8) with the actual air (1 + €)O, + (1 + €)3.76N>
as given by Eq. (1.9). Combining Eqs. (1.8), (1.9) and (1.10):
%Ae = (CO: + €3.76N2)/(Oz + 3.76N2)]100% aan
where 4,
4
00% of stoichiometric
صفحه 51:
Equation (1.11) requires knowledge of the excess oxygen ¢ in order to compute the excess air.
Actually, the Orsat analysis contains the information to accomplish the same result based on
knowledge of the product composition alonc.
Note that oxygen can only appeal the product if excess air
combustion. Noting product with a subscript p:
C+ +0902 + )۱ + €)3.76N2 > COxy + Ory + Noy 02
the excess air required موم
€)3.76Nz, the nitrogen which was part of the total air supplied 14
moles of excess air
Now the nitrogen present in the product came from the combustion air (unless fuel contained
significant nitrogen). Therefore, the actual O; supplied can be determined by computing the
moles O2 which were associated with Nap. In air, | mole of O, is associated with 3.76 moles of
Nz (by volume); therefore, for Nz» moles of nitrogen, the oxygen supplied is given by
©; supplied = Nzp/3.76 = 0.264Nap (13)
ها
The theoretical Oy is 0.264Noy
From Eq. (1.10)
Yode = WAs — A)/AJA00)
= (10.2642, — (0.264N2, — O2p)1/(0.264N2y — O2p)} 100%
[O25 /(0.264N oy — O2,)\(100) واه
If the combustion produced both CO and CO; (case of incomplete combustion), the
measured must be reduced by the amount of oxygen which would have combined with
to form CO.
‘Then:
[O2p ~ 0.SCOp]/[0.264N 3, ~ (Ozp — 0.5CO,)]}100% 0
لا
In each case, the quantity introduced is the percentage of each constituent as measured by the
Orsat analyzer.
صفحه 52:
(1)
(1.2)
(13)
Volume equation: V/V, =(P,/P3)(T>/T\)
Density equation: px/p, = (Ps/Py)(T\/T>)
Concentration equation: Cy/C, = (P,/P\\(T,/T2)
= volume at condition |
volume at condition 2
pressure at condition 1
pressure at condition 2
absolute temperature at condition |
absolute temperature at condition 2
density at condition |
density at condition 2
= concentration at condition |
= concentration at condition 2
۱ ۱ ۱۱ ۱ ۱ ۱ 1
/
Vy
2
5
1
11
0
8
0
GO
where