صفحه 1:
+1 اا كلا ۸ ۷6 ۳ ۷ 11 ۸
UNIVERSITY OF TECHNOLOGY
Ant Colony Optimization
By: Dr. Behrooz Karimi
Email: B.Karimi@aut.ac.ir
AUT- Department of Industrial
Engineering 1:۳ ۳
صفحه 2:
صفحه 3:
Ant Colony Optimization
Travelling
Salesant
Problem
‘ok clace licten up,
This problem might seem
second nature to you but in
some inferior species it is
called o "hard" problem
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 4:
Presentation Outline
Section I (Introduction)
Historical Background
Ant System
Modified algorithms
Section II (Applications +Conclusions)
HOE:
QAP
Conclusions, limitations
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 5:
Section I
Introduction
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 6:
Section I
Introduction (Swarm intelligence)
Natural behavior of ants
First Algorithm: Ant System
Improvements to Ant System
Applications
AUT- Department of Industrial
Benrooz Karimi
Engineering
صفحه 7:
Swarm intelligence
* Collective system capable of accomplishing difficult
tasks in dynamic and varied environments without
any external guidance or control and with no
central coordination.
* Achieving a collective performance which could not
normally be achieved by an individual acting alone.
* Constituting a natural model particularly suited to
distributed problem solving.
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 8:
مت و یبود و
Engineering ‘Benrooz Karimi
صفحه 9:
صفحه 10:
AUT- Department ¢
صفحه 11:
صفحه 12:
صفحه 13:
Inherent features
Inherent parallelism
Stochastic nature
Adaptivity
Use of positive feedback
Autocatalytic in nature
AUT- Department of Industrial
Benrooz Karimi
Engineering
صفحه 14:
Natural behavior of an ant Foraging modes
* Wander mode
* Search mode
* Return mode
* Attracted mode
* Trace mode
* Carry mode
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 15:
Natural behavior of ant
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 16:
Work to date
Problem name ‘Authors Algorithm name Year
“Traveling salesman Darigo, Manieaze & Colom 25 1
Gamberdella & Dorigo Ant 1995,
Dorigo & Gamberdella ACS GACS 3 opt 1996
Stutale & Hoos Mas 1997
Bullnheimer, Hartl & Strauss AS, 1997
Cordon, et al BWAS 2000
هه ‘Maniezzo, Colorni & Darigo ASOAP 1۳
Gamberdella, Taillard & Dorigo قدو كما 1907
Stutzle & Hoos MMAS-QaP 1998
Maniezzo ANTS.QaP 1999
Manivezo & Colorni AS-QAP 1994
‘Scheduling problems Colerni, Doriga & Manieaze ASSP 17
Stutzle AS-SMTTP, 1999
Barker etal ACS-SMTTP 1999
don Besten, Stutzle & Dorigo ACS-SMTWTP 2000
Merkle, Middendert & Schmeck ACO-RCRS 1997
10116 سس صسسسس ‘AS-VAP 1307
Gamberdella, Taillard & Agazzi HAS-VRP 1999
16
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 17:
Year
1596
1998
1998
1998
1997
1997
1998
1998
1997
1997
1908
1908
1998
1999
1999
1999
2000 1
Work to date
Algorithm name
ABC
SGA
AntNetFS.
smart ants
ani
AntNet & AntNetFA
Regular ants
car
ABC:backward
HAS-SOP
ANTCOL
as SCS
ANTS-FAP
هه(
ملعم
00
60
ها
Benrooz Karimi
Problem name Authors
Connection-oriented ‘Schoonderwood et al
network routing White, Pagurek & Oppacher
Di Care & Doriga
Bonabau etal
Connection less i Garo & Dorigo
network routing Subramanian, Druschel & Chen
Heusse et al
van der Put & Rethlrante
Sequential ordering Gamberdella& Doriga
Graph coloring Costa & Hertz
‘Shortest common
Supersequence
Michel & Middendort
Frequency assignment Maniozzo & Carbonaro
Generalized assignment Ramalhinho Lourenco & Serra
‘Multiple knapsack Loguizamon & Michalewicz
Optical networks routing Navarro Varela & Sinclair
Redundancy allocation Liang & Sith
Constraint satisfaction Solna
AUT- Department of Industrial
Engineering
صفحه 18:
How to implement in a program
Ants: Simple computer agents
Move ant: Pick next component in the
neighborhood
Pheromone: 2
Memory: M,or Tabu,
Next move: Use probability to move ant
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 19:
@
A simple TSP example
260
©
60
©0160 ورك:... 60 > ويك 200 مود
AUT- Department of Industrial
Engineering
صفحه 20:
Iteration 1
0
0
[e)
۹
| ©
20
AUT- Department of Industrial
Engineering 1:۳ ۳
صفحه 21:
How to build next sub-solution?
fe]
6 8 =
1 61
نج ل ا
1622107 تشد
Ingle 1 NOWSR 7 زو
otherwise 0
AUT- Department of Industrial
Engineering Behrooz Karim
صفحه 22:
Iteration 2
0.0
6.01
]0,۵[
22
AUT- Department of Industrial
Engineering و
صفحه 23:
Iteration 3
oo) 0:۵:
۳ 3
[0,0,0]
(oo)
-
0 نوا ©
e
23
AUT- Department of Industrial
Benrooz Karimi
Engineering
صفحه 24:
Iteration 4
[0,0,0,0]
© أ
6
24
AUT- Department of Industrial
Engineering و
صفحه 25:
Iteration 5
[2,0,0,0,0)
]۵,0,۵,۵,۵[
اين ©
Gal م
AUT- Department of Industrial
Engineering و
صفحه 26:
Path and Pheromone Evaluation
]0,0,6,0,®[
=
Arf, ©ههد ,نا 5
a
[2,0,.0,0,)
Ga,
= if, j)€ tour
eo
0 otherwise
موم ينا 9=Theobjectivealuef theestolutio
in theuureriteration
loo) بر =Theobjectivealuef thay, ant
]۵,۵,۵,۵,0[
20 مر
[2,0,0,0,0)
20 وا
fol
26
AUT- Department of Industrial
Engineering 1:۳ ۳
صفحه 27:
End of First Run
Beret Tents (Greenacres cod eed) ب
Ol acts che
QOew wits ae bora
27
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 28:
Ant System (Ant Cycle) Dorigo [1] 1991
Initializ
[x(t Ing IP
B=) یر Ele OF Mal?
0 otherwise
if jeallowed
tH باس
1, (t+ n)=pr,(t)+ At,
pi (i,j € tounlescribéay tabu
0 otherwise 28
Engineerin ig End ‘Behrooz Karimi
Au =
LJ
AUT- J
صفحه 29:
Stopping Criteria
Stagnation
Max Iterations
صفحه 30:
General ACO
* A stochastic construction procedure
* Probabilistically build a solution
* Iteratively adding solution components to
partial solutions:
- Heuristic information
- Pheromone trail
* Reinforcement learning reminiscence
* Modify the problem representation at each
iteration
30
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 31:
General ACO
¢ Ants work concurrently and independently
* Collective interaction via indirect
communication leads to good solutions
31
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 32:
Versatility
Application to ATSP is straightforward
No modification of the basic algorithm
32
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 33:
Some inherent advantages
* Positive Feedback accounts for rapid discovery
of good solutions
* Distributed computation avoids premature
convergence
* The greedy heuristic helps find acceptable
solution in the early solution in the early stages
of the search process.
+ The collective interaction of a population of
agents.
33
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 34:
Disadvantages in Ant Systems
* Slower convergence than other Heuristics
* Performed poorly for TSP problems larger
than 75 cities.
٠ No centralized processor to guide the AS
towards good solutions
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 35:
Improvements to AS
Daemon actions are used to apply
centralized actions
= Local optimization procedure
™ Bias the search process from global information
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 36:
Improvements to AS
Elitist strategy
e/ L(t) if arc(ij)e T”
۸ )(
0 otherwise
AS
rank
1, (t+ =(1- p ry (t)+ Saw. rar) (t)+ wir g(t)
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 37:
Improvements to AS
ACS
* Strong elitist strategy
= Pseudo-random proportional rule
With Probability q,:
20 ام
J =argmax.y,\t (thf
With Probability (1- q,):
[x,(OF [ny PP oo
———__, if jeallowed
P= کر کر
0 otherwise
37
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 38:
Improvements to AS
ACS (Pheromone update)
t,(t+ D=(1- p ke, (t)+ parC)
™ Update pheromone trail while building the solution
™ Ants eat pheromone on the trail
™ Local search added before pheromone update
38
AUT- Department of Industrial
Engineering 1:۳ ۳
صفحه 39:
Improvements to AS
T min Tey SU as
= High exploration at the beginning
= Only best ant can add pheromone
=" Sometimes uses local search to improve its
performance
39
AUT- Department of Industrial
Engineering 1:۳ ۳
صفحه 40:
Section IT
Applications +Conclusions
AUT- Department of
En
صفحه 41:
Travelling Salesman Problem (TSP)
TOP PROGLEO : Cred O otter, gad « dstoare Pucrton d betwern cites, Prod a
tour teat!
(. Gore took every oly owe od voy oe
©. Ontcrtzer he totd dotooce.
AUT- Department of Industrial
Engineering
صفحه 42:
ACO for the Traveling Salesman Problem
he POOP بت a very منود probew ihe voctent oP 60۵ توق
he orkid @O ue ae نت ماما تا مسا هی ین
Tl ست تسسات ست لمت سيا سحا Poteet athe ke
‘ie و موه اجه ما رو و
he MEO wos choseo Por وی روم
۶ hs a probles te whick the موی روت من
8 his woe oP he cost sted OP-hadd problews a the ovebiciorial opiceization
8 tte very evel to exphin. Go thot the okprthy behavior te موجه مسا نوا مهبم
techuirahies.
42
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 43:
Search Space
5 5 بو ومیل
a 8
De wok ree w erovoktedl o ata ver
مخ مایا نی نوا تخاس 1) (2) LS
brand ou bor kere م7 7
ook ede oP he rk annoecied سح جام و لانن 0
T (42) deported by wie.
Phervere & dose ord tp bated dt niet
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 44:
Ant Systems (AS)
et Gystews Por DEP
@rak (0,6): where ۵ < اوه (6 = eke
d, < tor rest Proce رو tie ot (eck werd)
ct wove Prow coe oly te the vent j wih soxe tenes probobiy.
44
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 45:
Ant Systems Algorithm for TSP
AUT- Department of Industrial
Engineering 1:۳ ۳
صفحه 46:
Rules for Transition Probability
1. Okoker or cet y vay hus been voted
4052 بحل )رصح د خاد le): [fet oP domes trator be visted
4سا لقح ات 6 كه 3002 اسر یر eo. Nz
مسقم طلم oP سر هس96
route. جا را انز رو | probably Por oct fs tc Pro vity ملع
سا ار
ا
let
a = 0: closest cities are selected
46
AUT- Department of Industrial
Benrooz Karimi
Engineering
صفحه 47:
Pheromone trail and heuristic function: are they useful?
g
bee — ACS standard
ACSno heuristic لا
@ 450
= —— ACS no pheromone
2 عم
5 a2 —— وبر تب
8
5 435
=
B 430
5 425
3
4204
40 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Problem size
Comparison between ACS standard, ACS with no heuristic (i.e., we set B=0), and ACS in which ants
er sense nor deposit pheromone. Problem: Oliver30. Averaged over 30 trials, 10,000/m iterations per
47
AUT- Department of Industrial
Benrooz Karim,
Engineering
صفحه 48:
Trail pheromone in AS
ORter the coxepteica oP a tour, cacy oot hae soe جمومصمصحام
Atk; (8) Por euck edhe thot they wed. depeuds pa how wel he wot
اس سا
Joma ۵6
AT (n= ۲
bs ) 0 if ET (A)
Trail pheromone 7, (7) <— (1- p)T,(t-) + AT, ()
decay =
48
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 49:
Ant Colony Optimization (ACO)
Qorte & Cawbardels troduced Pour و تالم 6908 :
4. فصو ال rude,
8 لها عون ارام لا updaies,
9 مسا اه مس updates oP ممصا او و( ۰ اما ام
] vondidate bet to restrict the choice oP the oext oly to visit.
49
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 50:
ACS : Ant Colony System for TSP
Loop
Randomly position m artificial ants on n cities
For city=1 ton
For ant=1 tom
{Each ant builds a solution by adding one city after
the other}
Select probabilistically the next city according to
exploration and exploitation mechanism
Apply the local trail updating rule
End for
End for
Apply the global trail updating rule using the best ant
Until End_condition
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 51:
ACO State Transition Rule
probabilistic rule
Oext ay 6 chose betwee he wot usted cites orcordiay too probubitetic nue
(Cxplotoica: the best edee is choses
(Cxploroiod: cack of te edges iv proportion to tis yoke
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 52:
ACS State Transition Rule : Formulae
۳ mar foro ie oy} ifq<qy (Exploitation)
1
۱
Jk(t) is the set of cities still to be visited by ant k positioned on city r
Band qo are parameters
wed (ry
| 5 otherwise (Exploration)
where
0 $ is a stochastic variable distributed as follows:
1 0
2)([ ]:۸( :
if seJ,(r)
0
سوير
ao
Lo otherwise
3 vis the trail
۰ و 15 the inverse of the distance
AUT- Department of Industrial
Engineering Behrooz Karim
صفحه 53:
ACS State Transition Rule : example
t(A B) =150 n(A B =1/10
2)4 0( 235 n(A CO =1/7
t(A D) =90 (A D) =1/15
sui probably == Afploitation
(Edue PB = dS)
swik probably ((- —-)@kploration
®® wih probubiliy ISG/CO
60 اس probubili, 26/26
®O wit probubiliy 0/26
AUT- Department of Industrial
Engineering
صفحه 54:
ACS Local Trail Updating
... Sivlor ty evoporaios
If an edge (r,s) is visited by an ant
a0,8)=(l-p} ,5)+ Ads)
with Az(r,s) = %
54
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 55:
ACS Global Trail Updating
tthe ead oP cack iteroiva the best oot is dhowed to reiPorce
its tour by depositiog oddiicod pherowour versely proportiocd
to the feath oP the tour
11,5) <11-a): (7,8) +a Adtr, NGloba
where
470: Global = LL...
‘best
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 56:
ACO vs AS
Pheromone trail update
Ocpost pherowour oer powwplettag a tour it BG
ere m CO only fre oot ای مد the best tour Brow the bec
bP thre مهن تا و ای ام thre توا ار مهو
ما و (sats seer of far artes or bret tsar sre Bear)
BG pheno ral urdate oppied to ol edges و
ALere 1 ®CO the dba pheroxrzar tral update toppled valy to the best tour
56
AUT- Department of Industrial
Engineering
Benrooz Karim,
صفحه 57:
ACO : Candidate List
اعلا للجم و Ose oP
جر ام tet oP prePerred ties to viet! ©
ابا لو fies ane لجو و ,تهت لك دسي
سوه اوه اس 8 مد رود بو توا بو جوز
* Oboe oP cent city یی عا و ما مت bist.
* Otker cites: oly Pool the cities to the tet hove bee visited.
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 58:
Performance
* @kworithe Pourd best svluivas a sual problews (“PS rity)
* Og loner problews cowerged to youd schutivcs — but at the best
* On “static” problews the MS سوه باه مها الم
* Oats are “dyoawic” opicoizers — skould we eves
expert wood perPorwoure وه ptaiz probes
* Couptiog cat with lod opicvizers yave work
AUT- Department of Industrial
Benrooz Karimi
Engineering
صفحه 59:
Quadratic Assignment Problem(QAP)
Problem is:
Assign n activities to n locations (campus and mall
layout).
مارفا 4) aes avs)
p= ۳ , distance from location i حصفجححها میا :
F= {fila Lu _flow from activity h to activ .—-
Assignment is permutatldn
Minimize:
Cn) = Yq Ly Ena
ija
« It’s NP
hard
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 60:
QAP Example
I
Location 9 ١
Facilities ع
5
biggest flow: A -
es des
How to assign facilities to
| 7 Ss
ocak ns eo
\
\
\
| |
°
Higher
Lower cost
AUT- Department of ngs! =
Engineering
Benrooz Karimi
صفحه 61:
Simplified CRAFT (QAP)
depurtieuts have ened sta مت ما8
۱ سر
حالما عمط مسا رو اس بر
ip locaton | لو ۰ ۲ وود ۳ ]
۷
PESO) ohare
ae 2 7 @ 1 مه
رسمه 6 © 0
Craewy” fn زر تسه
Boob ۱۲۰۱
141 ۱1 زا
rato قر
Bir 1 11۸۱۰1
VOT. ۱
61
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 62:
Ant System (AS-QAP)
ناساس سصصصوه
زاو وا دا و
a lovato t ما موجه :© مصاع
6/۳
تي اام رس ل easter’ (eta ی بای 3۳
و له اس وان ام مخ een pened departs em ee percha =
لمعم كار
= deed) coupled lcatives ond Pasties ore thibied (Tabu list)
62
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 63:
AS-QAP Heuristic information
Opkxee ond Pw Poteutals
0123 6 0 60 50 10 120
بر ر 9 0 0 وى 0 م باه 4 0 ال 0
1 ۱2 4 0 6 00 * 5۵0 30 0 50 ۰ ۱130
3560 1 10 20 50 0 80 |
The coupling Matrix:
720 1200 1440 1680)
| 260 1100 1320 1540 s, = fe d =720
~|780 1300 1560 1820 s,,=£+d, =960
480 800 960 1120)
رای وا با مس bee beacon debe Biman eae
AL
رت
2 63
AUT- Department of Industrial
Engineering Benrooz Karim,
صفحه 64:
AS-QAP Constructing the Solution
> he Panties ore racked ia deorrastoy order of the Blew pote
> atk wets the ما سا رد( | wil the probabiy, «ive by:
1 “رجا “اهارجا = Ho
رای
where Nie the Pestle Deichbor bord oP cde 1
if jeN
تاسلج و ما ٩ ۱ ما از تمه" مایت وا IOkeu Out k chovses
poled rove “pherowow” oa he ooupkay (1)
اج موه و و لو او
64
AUT- Department of Industrial
Engineering Behrooz Karim
صفحه 65:
AS-QAP Pheromone Update
> Pherowoue tral update to oll couplers!
tT, (t+) =px,(O+ 2S AG
kA
۸ ون و موه بح oat k puts oo the oouphery (1)
Q
۸
31 1
0 otherwise
if facilityi isassigned to location jin the solution of ant k
@ J} the objectivefunctionvalue
9 he eth bors Sey
65
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 66:
Hybrid Ant System For The QAP
اوه رین موه ور و cyphers pea nerd ki مرو
0
ماه امن ساوح موه وه امس موی بو
ام (لمسم) بو اوه دوه ماه حول لوا
مه امس
86
AUT- Department of Industrial
Engineering Behrooz Karim
صفحه 67:
Hybrid Ant System For The QAP (HAS-QAP)
way. ولو و هط wes oF the pheno )راخ
رنه ved ip ody oa ext
> eoprove the o's scktion veto اوه اما سل
ای حتاف لمه ماس ذا
67
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 68:
Hybrid Ant System For The QAP (HAS-QAP)
Generate m initial solutions, each one associated to one ant
Initialise the pheromone trail
For Imax iterations repeat
For each ant k=1 m do
Modify ant k;s solution using the pheromone trail
Apply a local search to the modified solution
new starting solution to ant & using an intensification mechanism
End For
Update the pheromone trail
Apply a diversification mechanism
End For
68
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 69:
HAS-QAP algorithms Performance
lOnwparsoxe wih sve of the best heurstes Por he QO have shows that 06-0
f exo the best os Par os red world, ood structured problews ore وی
OD ke poly ooerpetion wos show i cpeutiohybrid dkprike.
[Oe reso, ued uostructured problews the perPormce of L0G-Q0P war kes
powpetive ond tabu searches ore stil the best wehods.
opiotraiza were kted to trovelboy بوصامت مد تاه ماوت مه امه سا ,نوت وچ
ارام ات ی لو اراس ملد
89
AUT- Department of Industrial
Engineering Behrooz Karim
صفحه 70:
Similarities with other Opt. Technique
Populations, Elitism ~ GA
Probabilistic, Random~ GRASP
Constructive = GRASP
Heuristic info, Memory ~ TS
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 71:
Design Choices
٠ Number of ants
* Balance of exploration and exploitation
٠ Combination with other heuristics
techniques
* When are pheromones updated?
* Which ants should update the pheromone?
* Termination Criteria
71
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 72:
Conclusions
ACO is a recently proposed metaheuristic approach for
solving hard combinatorial optimization problems.
Artificial ants implement a randomized construction
heuristic which makes probabilistic decisions.
The acumulated search experience is taken into account
by the adaptation of the pheromone trail.
ACO Shows great performance with the “ill-structured”
problems like network routing.
In ACO Local search is extremely important to obtain good
results.
72
AUT- Department of Industrial
Engineering Benrooz Karimi
صفحه 73:
References
Dorigo M. and G. Di Caro (1999). The Ant Colony Optimization Meta-Heuristic. In D.
Corne, M. Dorigo and F. Glover, editors, New Ideas in Optimization, McGraw-Hill, 11-32.
M. Dorigo and L. M. Gambardella. Ant colonies for the traveling salesman problem. BioSystems,
43:73-81, 1997.
M., Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning approach to the
traveling salesman problem. /EEE Transactions on Evolutionary Computation, 1(1):53-66,
1997.
G. Di Caro and M. Dorigo. Mobile agents for adaptive routing. In H. El-Rewini, editor,
Proceedings of the 31st International Conference on System Sciences (HICSS-31), pages
74-83. IEEE Computer Society Press, Los Alamitos, CA, 1998.
M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: An autocatalytic optimizing process.
Technical Report 91-016 Revised, Dipartimento di Elettronica, Politecnico di Milano, Italy,
1991
L, M. Gambardella, ۱ E. D. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant colony system
for vehicle routing problems with time windows. In D. Corne, M. Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 63-76. McGraw Hill, London, UK, 1999.
L. M. Gambardella, * E. D. Taillard, and M. Dorigo. Ant colonies for the quadratic assignment
problem, Journal of the Operational Research Society,50(2):167-176, 1999.
V. Maniezzo and A. Colorni, The Ant System applied to the quadratic assignment problem. IEEE
Transactions on Data and Knowledge Engineering, 11(5):769-778, 1999.
Gambardella L. M., E. Taillard and M. Dorigo (1999). Ant Colonies for the Quadratic
Assignment Problem. Journal of the Operational Research Society, 50:167-176. 73
AUT- Department of Industrial
Engineering Behrooz Karim