کامپیوتر و IT و اینترنتبرق و الکترونیکعلوم مهندسیتکنولوژی

Hot Topics in Mobile and Pervasive Computing Discussion of LOC1 and LOC2

صفحه 1:
CSCE 5013: Hot Topics in Mobile and Pervasive Computing Discussion of LOC1 and LOC2 Nilanjan Banerjee University of Arkansas Fayetteville, AR nilanjan.banerjee@gmail.co m Acknowledgment: Romit Roychoudhuri for the slides Hot Topic in Mobile and Pervasive Computing

صفحه 2:
۱062: ۵

صفحه 3:
Location-Based Applications (LBAs) ™ For Example: " GeoLife shows grocery list when near Walmart " MicroBlog queries users at a museum " Location-based ad: Phone gets coupon at Starbucks ™ jPhone AppStore: 3000 LBAs, Android: 500 LBAs

صفحه 4:
Most emerging location based apps do not care about the physical location ى

صفحه 5:
Most emerging location based apps do not care about the physical location ى Instead, they need the user’s logical location 223 3

صفحه 6:
Physical Vs Logical ™ Unfortunately, most existing solutions are physical = GPS " GSM based = Google Latitude = RADAR " Cricket

صفحه 7:
Given this rich literature, Why not convert from Physical to Logical Locations?

صفحه 8:

صفحه 9:
Starbucks Pizza Hut Physical Location Error

صفحه 10:
Starbucks Pizza Hut Physical Location Error 10

صفحه 11:
11 SurroundSense: A Logical Localization Solution

صفحه 12:
12 Hypothesis such as sound, light, color, movement, WiFi

صفحه 13:
13 Hypothesis It is possible to localize phones by sensing the ambience such as sound, light, color, movement, WiFi

صفحه 14:
Multi-dimensional sensing extracts more ambient information Any one dimension may not be unique, but put together, they may provide a unique fingerprint و 14

صفحه 15:
SurroundSense ™ Multi-dimensional fingerprint * Based on ambient sound/light/color/movement/WiFi 15

صفحه 16:
Should Ambiences be Unique Worldwide?

صفحه 17:

صفحه 18:
Why does it work? The Intuition: Economics forces nearby businesses to be fee Not profitable to have 3 adjascent coffee shop: with same lighting, music, color, layout, etc. SurroundSense exploits this ambience diversit 18

صفحه 19:
SurroundSense Architecture Fingerprin Logical GSM Macro | Location Location yy Candidate Fingerprints 19

صفحه 20:
Acoustic fingerprint Fingerprints (amplitude distribution) z ™ Sound: 3 (via phone 3 microphone) ‏ع‎ ‎5 ‎2 ‎“0.8 ‏وم‎ 04 02 0 02 04 06 1 Amplitude Values @ Color: Color and light fingerprints on HSL space 1۷8 ۳ 00-5 =. camera) 2 eet 5 5 3 20

صفحه 21:
Fingerprinting Sound ® Fingerprint generation : Signal amplitude = Amplitude values divided in 100 equal intervals = Sound Fingerprint = 100 normalized values * value, = # of samples in interval x / total # of samples ™ Filter Metric: Euclidean distance " Discard candidate fingerprint if metric > threshold ‏ع‎ ™ Threshold r = Multiple 1 minute recordings at the same location = d, = max dist ( any two recordings ) = r = max (d, of candidate locations ) 21

صفحه 22:
Fingerprinting Color ‘Fe ۳2 ® Floor Pictures 1 " Rich diversity across different locations " Uniformity at the same location x ee ® Fingerprint generation: pictures in HSL space =" K-means clustering algorithm * Cluster’s centers + sizes ® Ranking metric 7 1 SizeOf(Cus) SizeOf (Cry) = aa 7 2 ‏ةك‎ 22

صفحه 23:
Fingerprints ™ Movement: (via phone accelerometer) Cafeteria Clothes Store Grocery Store ۳ || | | | ۱ ll Static ۱ ۱ ۲ 500 1000 1500 2000 ۰ 250 ۰ 3000 3450 3500 3550 9000 3650 3700 3760 3800 2000 2100 2200 2300 2400 2500 0 Time(s) Tine () Time (6) 23

صفحه 24:
Fingerprints ™ Movement: (via phone accelerometer) Cafeteria Clothes Store Grocery Store Moving} | | , | ۱ ۱ Static “+s | ۱ | ۱ | | ۱ ۲ 2:05 :20 200 جح ند دم ترجه تن هد ند نم 0 ‎ar‏ Time(s) Tine () Time (6) Queuing Seated 24

صفحه 25:
Fingerprints @ Movement: (via phone accelerometer) Cafeteria Clothes Store Grocery ۱۱۱ 500 1000 1500 2000 2500 3000 3450/4500 3550 3600 ‏700تؤادوة‎ 3750 3800 2000 2100 2200 2000 200 2500 0 Time(s) Tine () Time (6) Moving} Static Pause for product Short walks browsing between product browsing 25

صفحه 26:
Fingerprints @ Movement: (via phone accelerometer) Clothes Store Grocery WL LTT 01 11 ‘28008000 9460 3500 9550 9600 9850 9700 5760 3800 2flo F100 2200 2000 Ago 2500 600 Time s) Tine 6) Walk more Quicker stops 26 Moving Static 3

صفحه 27:
Fingerprints @ Movement: (via phone accelerometer) Cafeteria Clothes Store Grocery Store il | ۳۱۱۱ ۲۱ 500 1000 1500 2000 ۰ 250 ۰ 3000 3450 3500 3550 9000 3650 3700 3760 3800 2000 2100 2200 2300 2400 2500 0 Time(s) Tine () Time (6) Moving} Static @ WiFi: (via phone wireless card) f(overheard WiFi APs) 27

صفحه 28:
Fingerprinting WiFi ® Fingerprint generation: fraction of time each unique address was overheard ® Filter/Ranking Metric " Discard candidate fingerprints which do not have similar MAC frequencies min( film), fo(m)) ‎(film) + $2) ax fa(m), fa(m))‏ 8 درق ‎meM ‎28

صفحه 29:
Discussion ™ Time varying ambience = Collect ambience fingerprints over different time windows ™ What if phones are in pockets? = Use sound/WiFi/movement " Opportunistically take pictures ®@ Fingerprint Database =" War-sensing 29

جهت مطالعه ادامه متن، فایل را دریافت نمایید.
34,000 تومان