صفحه 1:
OrtPicial Oeurd Opto ia Dathab Wey Perciccnd

صفحه 2:
408 مس ی وت نت ‎Rx(l‏ مس ی نو جا جز ‎bi bres‏ ‎a =F(Op + b)

صفحه 3:
@ = havdlim(n) @ = purelin(n) Hard-Limit Transfer Function Linear Transfer Function a= logsig(n) Log-Sigmoid Transfer Function med averkn Orkd> 8

صفحه 4:
مه ارب ‎Orvhitecture‏ Input Layer of Neurons Where, R= number of elements in Input vector S= number of neurons in layer 1 ‏سس‎ ‎a= f(Wp+b) wis weight watices, dimeasiza xR Pie REM Levin, ckorusiza Rice bebe ‏هد متسه‎

صفحه 5:
Dulttiple tayers Layer 2 Layer 3 Input Layer 4 7 7 7 ‎J 5 J‏ ۲ 4 لاا ‎a2 +bs)‏ لايل تاد نو ‎ar =f! (Wap +b) a2 = 2(LWatat+be)‏ ‎a =B (LWe R (LWeifl ‏ره هد‎ be) bs) ‎ ‎ ‎ ‎

صفحه 6:
(Pervepirces it Outab QOuhe the pervepirces with net = newp(PR,S,TF,LF) ۳0 = RxO ‏اه سم‎ coin ood sax vokeD Por R ‏اه نو‎ (© = eanvber oP pulpal vec DE = DrosePer Pietra, dead = ‘hardko’, her option = kordkes’ ۵ = Learciey ‏,مقس‎ dePoul > ‏مات من ان تما‎ متسد تما ع سس سید تلم مرو < لها bop > Aw = (rup” = ep” hearst > srseeckaid bess te where e = 1-3 ۵ للها سوسس 00 + رطع یط

صفحه 7:
...ووم من This is co exercise how to roo the orfiPicil ‏سوه اسهم‎ row the cent problew, we will cocopute the weights und biases woudl 8

صفحه 8:
)3020 Cute ia (Percept 0 T ۱ ۱ Ss ‏هه‎ net = newp([O 1; 0 11,1); weight_init = net.IW{1,1} bias_init = net.b{1} net.trainParam.epochs = 20; net = train(net,P,T); weight_final = net.IW{1,1} bias final = net.b{1} simulation = sim(net,P)

صفحه 9:
i; 5 net = newp([O 1; 0 11,1); weight_init = net.IW{1,1} bias_init = net.b{1} net.trainParam.epochs = 20; net = train(net,P,T); weight_final = net.IW{1,1} bias final net.b{1} ‏اه‎ ‎simulation = sim(net,P) oa 0 ‎O‏ = سرصم ,[0 ‎ ]0‏ مرس 0- د مط_صطط ,[0 0] - ام ماس ‏° قف »د ‎md‏

صفحه 10:
DO@BOOD Cute ia (Pervepirou (9011; 0101); {111 0]; 0 P= Ts net = newp([O 1; 0 11,1); weight_init = net.IW{1,1} bias_init = net.b{1} net.trainParam.epochs = 20 net = train(net,P,T); weight_final = net.IW{1,1} bias final = net.b{1} ae} simulation = sim(net,P) a © د سرصم ,[ ©] د مرس © - مخ_صطط ,[ م] د امسر 0 فج م بابدلا سملا

صفحه 11:
MOOR Cate ia ‏جمسادرصص و۳)‎ 1 1: 0 0); ۳ ao} net = newp([O 1; 0 11,1); weight init = net. IW{1,1} bias init = net.b{1} wel net.trainParam.epochs = 20; net = train(net,P,T); weight_final = net.IW{1,1} bias final = net.b{1} wel simulation = sim(net,P) aa. we

صفحه 12:
(@uckpropayiion ict Duta Quake the bockpropocatica wit net = newff(PR,[S1 S2...SN1],{TF1 TF2...TFNU},BTF,BLF, PF) PR = RxO ware oF cont ond wae uckes Por (R ‏اه نو‎ ۵ < ‏موه ۲اه طلسم‎ vec OPE = PrxePer Reto (wer our we wy innePer Pucetine) LP ‏مس مسا ع‎ 20 02200000 «©

صفحه 13:
Licear Pier (wit POO) ix Duty QOuke the Liceur Pier wit newlin(PR,S,ID,LR) ۳0 = RxO ‏اه سم‎ coin ood sax vokeD Por R ‏اه نو‎ (© = eanvber oP pulpal vec 1D = deta ۸ < ‏مسا‎ 2-5 ۱ 02200000 «©

جهت مطالعه ادامه متن، فایل را دریافت نمایید.
34,000 تومان