صفحه 1:
15-213 “The Class That Gives CMUlIts Zip!’ Introduction to Computer Systems و ‎January 16,2007‏ Topics: * Theme * Fiwegreat realities of computer systems * ‏اقلا لنت ا جئدت كا نااك ابد وناو ك6 ج34‎ classOla.ppt ‏موی‎

صفحه 2:
Course Theme Abstraction is good, but don’t forget reality! Courses to dateemphasizeabstraction ° Abstract datatypes * Asymptoticanalysis These abstractions have limits ۰ Especiallyin thepresence of bugs * Needtounderstandunderlying implementations Useful outcomes * Becomemoreeffectiveprogrammers - Able tofindandeliminate bugsefficiently - Able totuneprogramperformance * Preparefor Cater “systems” classes - Compilers, Operating Systems, Networks, Computer Architecture دی 2 مم ها

صفحه 3:
Great Reality #7 Int’sarenot Integers, Float’sarenot Reals Examples * ‏مروز‎ 67 - Float's: Ves! - Int’s: » 65535 * 65535 --> -131071 (On most machines) » 65535L * 65535 --> 4292836225 (OnACpha) ۶ Is(xt+y)+z = x4(y+z)? -‘UnsignedInt's: Yes! - Float's: « )1610 + -1610( + 3.14 --< 4 » 1e10 + (-1e10 + 3.14) --> 0.0 دی ۳ مم ها

صفحه 4:
Computer Arithmetic Does not generaterandomvalues * Arithmetic operations haveimportant mathematical properties Cannot assume “usual” properties * Duetofiniteness of representations * Integer operations satisfy “ring” properties (usually) - Commutativity, associativity, distributivity * Floating point operations satisfy ‘ordering’ properties - Monotonicity,vaCues of signs Observation ° Neektounderstandwhichabstractionsapplyin whichcontexts * Important issuesfor compiler writersandserious application programmers دی ‘ مم ها

صفحه 5:
Great Reality #2 You’ve got toknow assembly Chances are,yow(l never write programin assembly * Compilers aremuch better at thisthan- youare ‘Understanding assembly key tomachine-Cevel execution model * Behavior ofprogramsin presence of bugs ~ High-Level Canguage model breaks down * Tuning programperformance - Understanding sources of programinefficiency * Implementing system software ~ Compiler hasmachinecodeas target - Operating systems must manage process state classOla.ppt 5 ‏دی‎

صفحه 6:
Great Reality #3 Memory Matters Memory isnot unbounded * Itmust beallocatedandmanaged * Manyapplicationsarememory dominated * ‘Thememory systemcan be the largest portion of amachine’scost Memory referencing bugs especially pernicious * Sffectsare distant inbothtimeandspace Memory performanceis not uniform * Cacheandvirtual memory effects can greatly affect program performance * Adaptingprogramtocharacteristics of memory systemcanleadto mafor speedimprovements مم ها دی

صفحه 7:
Memory Referencing Bug Example main () 1 long int a[2]; double d = 3.14; a[2] = 1073741824; /* Out of bounds reference */ printf("d = %.15g\n", d); exit (0); Alpha MIPS Sum -g 5.30498947741318e-315 3.1399998664856 3.14 -0 3.14 3.14 3.14 دی 5 مم ها

صفحه 8:
Memory Referencing Errors CandC++ donot provideanymemory protection * Out of6oundsarrayreferences * Invalidpointer-vatues * abuses ofmatloc/free Canleadto nasty bugs * ‘Whether or not bug has any effect systemandcompiler dependent * Actionata distance - Corrupted object Cogicallyunrelatedtoonebeing accessed ~ Effect of bug may occur Cong after it occurs How canI deal-withthis? * Programin Java, Lisp,or ML * Understandwhat possibleinteractionsmay occur * Alseor develop tools to detect referencingerrors - E.g.,Purify دی ۰ مم ها

صفحه 9:
sum += afi][k] * b{k][j]; Memory Performance Example Implementations of Matrix Multiplication * Multiplewaystonest Coops 7* 7 for (j=0; jen; j++) { for ( icn; i++) { sum = 0.0; for (k=0; k<nj k++) 7۳۰106 icn; itt) 4 isn; j++) { sum += a[i][k] * b{k][j]; e(i][j] = sum; clil{j] = sum } 1 class0la.ppt ۲ ‏دی‎

صفحه 10:
Matmult Performance (Alpha 21164) ToobigfortrCache Toobigfor£2Cache 0 = ا مه انز و از هه ‎i]‏ سر إن و PEP SPE LE PELE PEEL EEE LS matrix size (n) دی ۳ مم ها flops (4.p.)

صفحه 11:
Blockedmatmult perf (Alpha 27764) اه هم ‎ik‏ ی > ی هه هها 160 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 0 matrix size (n) 7 353200 class0la.ppt mflops (4.p.)

صفحه 12:
Great Reality #4 There'smore to performance than asymptotic complexity Constant factorsmatter too! * Easily see 10:7 performance range depending on ‏القع !1 جرح عه ام‎ ° Must optimizeat multiple levels:algorithm, data representations, procedures,andloops Must understandsystem to optimize performance * sfowprograms compiledandexecuted * Sow tomeasureprogramperformanceandidentify bottlenecks * Stow toimproveperformance without destroying codemodularity and generality دی 2 مم ها

صفحه 13:
Great Reality #5 Computers domore than execute programs They needtoget datainandout * T/Osystemcritical toprogramreliabilityandperformance They communicate witheachother over networks * Many system-Level issues arisein presence of network - Concurrent operations by autonomous processes - Coping withunreliablemedia ~ Cross platformcompatibility ~ Complex performance issues دی ۳ مم ها

صفحه 14:
اانا سدع )م1 Curriculum Network ‘Processes MachineCode Protocols Mem. Mgmt Optimization ‘Exec. Model S212 ‘MemorySystem sein | | oa, ‏سا‎ ‎Models ۷ 1 Data Structures TransitionfromAbstract to Applications Programming Concrete! * From:high-Cevel Canguagemodel save * Torunderlying implementation Fundamental Structures دی مم ها

جهت مطالعه ادامه متن، فایل را دریافت نمایید.
29,000 تومان