صفحه 1:
صفحه 2:
صفحه 3:
تسه كشاورزى مدرن بر سطح بالاى توليد و توزيع محصولات 6
ین ال کید کرده ات
کنندگان یکی ترا کید بت بر یتوافت Ab ae pare ملت
وزی به هی معلی ملی و
محفظه سينى. سالخورده. حمل و تقل به هی دور و كهدارى طولاتى تر py Ban
ضررهی تشی از قرج ها رشته ياكثرئ ها متضترها اميت la ينا كزفة اننتة
اكرجه يعو در كار
لد تزع مود یی با زین ei UN gal yl
محصولات زا و پس از راشت محصول سکن است بای
نافیل سیب محصول و تفت ناشیا پوسیدگیپس از راشت محصول snes A
زمان ذخييه سازى طولانى تر و حمل و قل بين A J ll احثمال بوسيدكى اوليه ممكن
است gle tay ake ppl که یک we eg
محدود كنتده عمده تبديل شوند يا مشكلات جديدى أز عوامل بيمارى زا هبل گرد
اعركونه تفي در توليد. جابجايى يا قرأورى كالاها ممكن انسث منج به یش
مقدمه
۳0000۵
‘The development of modern agriculture has emphasized
high levels of production and distribution of agricultural
products to local, national, and international markets.
Successful marketing depends on delivering high-quality
produce to consumers. With increased emphasis on crop
Uniformity, bulk handling, tight-fill and cavity-tray pack.
aging. shipment to more distant markets, and longer
storage, it has become increasingly important to
minimize losses caused by bacteria filamentous fungi,
and yeasts,
Although improvements in growing and postharvest
handling of crops may provide more efficient means of
food production and distribution at lower costs, they
often increase the potential for crop injury and
subsequent losses from postharvest decays. With longer
storage times and long-distance transportation, the
potential for primary decay's may increase. Decays that
were once secondary or minor may become major
limiting factors, or new problems from previously unknot
pathogens may develop. Thus, any change in
production, handling, or processing of commodities may
صفحه 4:
Pit hey ألوحد كد يه حداتل Spin og J Jl Spare
Se در شيوههاى توليد قبل از برداشت كه به طور كلى مطح تلفيح
Jo» يوسيدكى يس از برداشث را لايش داده.
فرهنگی یه وان مال کشت با چا ری اوه سر
قصول طولتى تزبرداشت. و كاشت ارقام حساس جديد يناراين يا فزليش
مناطق توليد يك معصول ممكن لسث استرازى هاى توليد صتخي
براشت به دلايل اقتصادى به خطر بيفتد. يا مشكلات بيمارى موضعى در
يافاك يزرك مشاهحه تود يزاين تتوع محصول به ليل مدرفی لها
اجديد. ممكن أست مشكلات جديد يا نلشتاخته بيمارى يجا شود
‘These changes promote increased research in
Improved postharvest disease control that have
Permitted the development of successful long
distance marketing and shipping,
‘Any postharvest decay management program
needs to begin with preharvest practices that
promote a healthy crop, reduce conducive
environments for pathogen infection and disease
development, and minimize the amount of the
pathogen that may insect or contaminate the crop
before harvest. Changes in preharvest production
practices that have generally increased the
inoculum levels of postharvest decay organisms and
the potential for postharvest decays to occur
Include increases in production acreages,
diversity of crops, new cultural practices (e.g.
high-density plantings, high-angle or overhead
Irrigation). longer harvest seasons, and planting of,
new susceptible cultivars. Thus, with
Increased production areas of a crop, sound
preharvest production strategies may be
compromised for economic reasons, or
localized disease problems may not be noticed in
large orchards. With increased crop diversity due to
the introduction of new commodities, new or
Unknown disease problems may be introduced.
صفحه 5:
بن روش ساير روشهاى بيش از برداشت ماند استفاد از أقام مفلوم. روشا
ار که ول چا ايه حتاقل م رساك كود متادل أرضه مد
كه از كاشت محصول يا آغاز هر قصل رشد أفاز م شود هر طيل
تم نامه یی وا طريق حمل و تقل بس از بد
ae خيره سازى. حمل و تفل و الى تا زماتى كه محصولات به
است مصرف کنده لوس روشهای حمل و تقل پس از رات بر حظط
سلامت فیزیلوزیمحصول وه حدقل ادن لفات ناشیا پوسیدگی
متمركز يلد ميودها و سيزيجاتى كه داراى مثلوليسم قعال مستند مقاومت قليل
tact nas GE oh tic یکی هخا تسیل رز
۳ أو املاح جر با فادها اکیزی کش بات
In contrast, other preharvest practices such as the
use of resistant cultivars, irigation practices
that minimize wellness duration, balanced
nitrogen fertilization, canopy management
(pruning). insect and weed control. and the use of
fungicides may reduce the amount of fruit decay
before and after harvest and reduce inoculum levels,
of targeted pathogens (Adaskaveg and Forster
2000).
Preharvest disease management in the field is an
Important component of the integrated pest
management (IPM) strategy _to control pathogens.
Similarly, postharvest decay control practices
should aiso be considered part of an IPM program
that begins at crop planting or the beginning of
teach growing season continues through the season,
‘and extends on through, postharvest,
handling, including packaging. storage,
transportation, and marketing until the produce
reaches the consumer. Postharvest handling
practices should focus on maintaining a healthy
physiology of the produce and on minimizing losses
from decay Fruits and vegetables that have an
active metabolism show considerable resistance to
‘microbial infection and decay, whereas stressed or
senescent fruits are prone to disease. In addition,
actively of decay microorganisms depends on the
presence of conducive environmental conditions.
وج نموم مهم نومیم مسا مه دله ۲ عم پم[
صفحه 6:
ای یه سر سپ ور یأر ی
tae gl es وميد هاى ناشي ار قرجها مرك
تيمهاى قر كش يس لز داكت به طور مور يوسيدكى وهای مت
نيم كرمسيوى و كرسيرى ركلف مي مهد (pela dag
سح نع ازجا دی در يدن مو شوتد بطو لى مقرون به شرف
بون و وه مسا کول رو زول مات ماب ره وروی
عديريث بيمارى است و در يرشى موارد كتتول هاى بيولوزيكى در بای
تاه تفاضا براى محصولات اركانيك يا ری J سموم دقع قات ني قزاي
Sat des occas: ی و
راتسا مد لت رای ون رت ری بلج و
ad pny A a ta lh pane
Dig iene mien:
لد د ده لك و مان دید ما لشن
لاح ده و رای رها وه تاه یدوز هم داز
“ip Aja as oy gute cca peel ae
عناوم soe میت ومد
مسوات ی اه موه کنر منود
هی مد
Because fungi cause the majority of postharvest
problems, the remainder of this chapter will focus
‘mainly on decays caused by fungi
Postharvest fungicide treatments effectively reduce
decay of temperate, subtropical, and tropical
fruits (see Eckert and "Ogawa 1985, 1988).
Properly applied treatments prevent or impede
the development of decay-causing organisms, are
generally economical, and are important means
fof controlling deterioration of fresh and processed
food crops. Currently chemicals are an
integral part of disease management programs and
in some instances biological controls have been
integrated into existing programs. With higher
demands for fresh produce by consumers, the
demand for organic or pesticide-free produce has
also increased. Furthermore, with heightened
awareness regarding worker and consumer safety,
restrictions are being placed on the use of many
‘older postharvest chemicals, Thus, development
‘of new treatments for food crops to minimize decay
losses has increasingly emphasized safer products,
‘minimal residues, and if possible, methods that do
‘not use pesticides (e.g., temperature management,
‘modified atmospheres, etc.) for specialty markets.
Stil, the use of pesticides has resulted in a
reasonably sale supply of horticultural commodities
with minimal health risks from pesticides and
decay-causing microorganisms, as well as their by-
صفحه 7:
3
مثلشبيماز صى8),ا1)1050:)5/ :66060 0/16 6ر71
خرمورد بيمارى هلى قبل از برداشت. بيمارى هلى يس از برداشت رأ مىتوان ب عنوان برهم ES
بيمارى توصيف كود ميزان باون و محيط. تفيبر هرعر يك از لين اجزلى مثلث بيمارى
بر مان الى بيمارى تأثير م ىكذاد و بر قدامات كدثرلى تأئ م ىكذارد. استفاده از هرماهاى
ne مديريت دمء اتسفر املاح شده و فيره) يس از برداشت (شيميى. به
عون SES De ببولوزيكى) از بوسيد كى جلوكير
میکن با آن جلوگیری میکن. سترازیهای دمن و دمن اد ماس دکش صحح از
روايط متقابل ميزيان بيمارى براى دوردهلى قبل و هر زمان هرمان بلشد.نكات مهمىكه بايد هر
انظر كرقته شود مبارتتد از
‘As for preharvest diseases, postharvest diseases can also be
‘described as the interaction of the disease triangle: host,
pathogen, and environment. A change in any of these
‘components in the disease triangle will influence the final
Amount of disease and will affect the control measures to be
taken. The use of postharvest physical (e.g. temperature
management, modified atmospheres, etc.) and chemical
] sanitizers, fungicides, and biological control
agents) prevents or inhibits the development of decay. Handling
and treatment strategies must be based on a sound knowledge
‘of the hostpathagen interrelationships for the periods before
and at the time of treatment, The critical points that must be
considered are
+ the types of pathogens involved
+ the location of the pathogen and whether it ls contaminating
the surface or is established within the host tissue
+ time and location of pathogen infection
+ the best time for treatment to prevent a secondary disease
cycle during storage and transport
+ the maturity of the hast with reference to susceptibility to
specific pathogens
+ the environmental conditions during storage, transportation,
and marketing
+ storage, distribution, and marketing strategic that accelerate
delivery of commodities
صفحه 8:
slashes خاص برا
تأثيرات متنى هركوته هرمان يس از بايد فر
تظر كرفته شود به هتوان مل دماى تامناسب تكهدارى يا جو املاح
pe lye egal lap gly pr Sa adh
اين ite la علاو رین
eee Si AUS ee My a
Aa ym IS Fay Sa فيزيكى و شیمیی بر
شواهد بود امول سركوب بيمارى با استفاده از روشهاى مستكارى. od
محيطهاى املاح شده
كنثول شد استفاده ازاتيلز, و غيره
عنوان مثال يلغ در زمان
به أن يراحقة خواهد شد علاوه
بان در يوسيدكى ليه
یسیو شیر
موجود یی كنتول باتو نهلى بوسيدكى يس از برداشت. فاد
مناسب أزاين مواد و استرزىها باى به حداقل رساندن توسعه مقاومت
در جمعيث ها هدف و وضعيت تظارتى مواد شيميانى
SPS بيولوزيكى بررسی میشود.
Specific treatments are selected based on these
parameters. In addition, negative effects of any
postharvest treatment on fruit. quality should also
bbe considered. For example, improper storage
temperatures or modified atmospheres may lead to
‘off-lavors or fruit discoloration, The interactions of
the disease triangle that affect decay management
by changing host physiology or the physical and
‘chemical environment will be the central focus of
this chapter. Principles of disease suppression by
handling practices, modified environments,
storage (e.g., temperature management,
Controlled atmospheres, use of ethylene, etc.), and
the influence of the host on decay (e.g. maturity at
harvest, climacteric and nonclimacterie fruits
tc.) will be discussed. In addition, chemical and’
biological treatments available for
Controlling postharvest decay pathogens, proper
Usage of these د سود ةرو ze
Teslstance develop artzanma cerns Gnas” ans,
land the regulatory saints ‘st
‘chemicals and bio
reviewed.
صفحه 9:
وهای یی رایس
55
ود فا تي منج به ود ری و رای
aoe ا |
السث. كربوهيدراتهابى كه به 00) 1كسيد مىشوند و أب توسط فتيسنئز بركهاى سبز با
رتش بت ند ی و سجن و ند ری وی مق
ما لیخد کرت تا مد sega
یک ای که ون مسق وه دس ری سای کی
اتتفس فرآيندى الست كه لین
درجه قارهايت) قار مى كيرن. يكى از دو الكوى تنفسى بسيار متفاوت را نشان مىدهند.
هماتطور كه توسط توليد 0© نشان داده شده اسث (شكل 4111 كيلا هاى شيرين با
شهنه به تدريع ميزان تنفس را نشان مىدهند. همانطور كه توسط خط دوت
اشث قبل از رسیدن کال در طی مراحل رسیدن
هو در نشيجه طمم شيرين تر ایجاد
POGTLOROEST LOGT PUY CIOLOGYEH 2 Sls gs Saleh
CLIMACTERIC AND NONCLIMACTERIC FRUITS
Respiration is a process by which the captured eneray of
light stored in organic compounds by photosynthesis Is
released by oxidation. The respiratory process results in
usable chemical eneray and heat (vital heat or heat of
respiration). While a fruit is stil attached to the plant,
carbohydrates that are oxidized to CO, and water are
replaced by photosynthetic from green leaves or from,
stored reserves in the plant. Once separated from the tree,
the fruit relies on its carbohydrate reserves. The respiratory
process must continue to produce energy for cellular
functions or the fruit tissues will die, Postharvest
environments are designed to reduce the rate of respiration
to the minimum required to maintain vital processes. The
stored reserves are thereby conserved and the postharvest
life of the fruit is extended to a maximum,
Fruits harvested and placed in respirometers at about 20°C
(68°F) exhibit one of two very different respiratory
patterns, as shown by CO, production (fig. 17.1). Sweet
Cherries show a gradual decrease in the respiration rate, as
Indicated by the dated line, as they ripen and senesce.
When harvested before fully ripe, the cherries darken and
become soft during the ripening process. Acids may
decrease, resulting in a sweeter taste, but large increases
in sugar do not aceur because of the absence of large
reserves of starch at harvest. In addition to sweet cherries,
صفحه 10:
تنفس اقليمى توسط اكثر كونههاى ميوء درختان بركريز به عنوان مال
سیب. کلای تدالو هل شليل. الو به مايش كذاشته موشود. سیر
ميودهاى #رصسيرى و تيمه كرصسيرى (به عنوان Sh Ye igs Soe
Eso eee a) كاه كنيد
على لوج كيرى اوضاع. ميودها نرم مىشوند و
رتك زرديا لز دست خامن كلروقيل واقزايش رتكداتمعاى كاروتتويد تشديد
م شود دو آن زمان ممكن اسث أنتوسيانين ازنك هاى قرمز. أ و بتفشس).
توليد شود. توليد تيان مانند ساير مواد قار جمله تركييات مرقيط ب
رليحمعاى ميوه.ازايش مىياب. اوج منحنى تنفسى تقريبً نی است که
تنفس كاهش موريايد در ميودهلى اقليمى برداشث قبل از EIB eae
اوضاع در تنفس يهثرين راه بواى رسيدن به حداكثر عمر يس از Sle
استه مطاقعات نان دلده ست كبا رار كوفئن lpia seme
ny Se اقرش لوضاع را شروع کرد اكر برشى از ميودها شرو
رسيدن كرده باشحد انان توليد شده ممكن اسث بامث افزايش تنفس در
ميودطلى باليمانته شود به طور متايه ميودهاى يوسيده يا كيودى مك
لس اتيان كافى براى تحريك رسيدن أزاد كتند
je ee ae ارود مملكره سليلى يداخر مها شيم هق
کاهش میا تفس باه در سوت مان ه حداقل ادن وبه تخیر
Sl یش وفع و فریندهای رین مربط شروریاست. ین مهم
JES) ls ۱۷۲ با ترکیبی از دماى بابين واتمسفر املاح شد.
CClimacteric respiration is exhibited by most
deciduous tree fruit species (e.g., apples, pears,
apricots, peaches, nectarines, plums). many tropical
‘and subtropical fruits (e.9. bananas, guavas,
‘avocados, mangos), and some fruit vegetables (e.9.
tomatoes) (see fig. 17.1, slid line). During the
climacteric rise, fruits Soften, and yellow colors
intensify through loss of chlorophyll and increase of
Carotenoid pigments. Anthocyanins (red, blue, and
ppurple colors) may be produced at this time
Production of ethylene increases, as does that of
‘ther volatiles, including those associated with fruit
‘aromas. The peak of the respiratory curve
‘approximates the time that fruits are considered
ripe for consumption. After the climax, respiration
{gradually decreases as the fruits senesce. In
Climacteric fruits, harvesting before the start of the
climacteric rise in respiration is the best way to
attain maximum postharvest life. Studies have
shown that the climacteric rise can be initialed
prematurely by exposing fruit to ethylene. If some
Of the fruit have started to ripen, the ethylene they
produce may trigger the respiratory rise among the
Femaining fruit. Similarly, rotting of badly bruised
fruit may release sufficient ethylene to trigger
ripening,
itis important to maintain fruts in a vigorous
Condition by lowering the respiration rate to the
‘minimum that still permits nor. mal cellular
function. With climacteric frults it Is essential not
صفحه 11:
ی
پوسیدگیحفظ spe
روخ رسيدن ميوه مفاومت به طور محسوسى كاهش مو بابد. ميوه نه تنها هنكام رسيدن
به شايع ترين عوامل بيماري زا خود حساس م شود. بلكه
زابى تسليم مىشود كه قبلا در بار أن مقاوم بود انسته ب عتوان مثا موه هی ی
يا زديك شدن به بلو + بيشتو در معرض بيمارى هاى اصلى محصول هستند از جمل
.بوسيدعى قهوه ای ای از 3160/3 169۷ 140011013 و كيك خاكسترى تاش
10663 3010/۵5 از انا کی سوه ها کل ره پر می شود تا
هلى ديكر منند وه های 80126۴5 با ۳6۳ مسول ات یس
یی سللی در آسیبهای موه اد میشود. سای آسیب دید تطس را ای
El ISTE ys تیک میشود و جر هپیریسلولی با مرگ میشود
حساسيث به كوفونيزاسيون قرح افزايش مىيابد. يعبود يخشيدن به زخوهلى ميزيان در
بسلوغ ميوهملئ»0091:000+11 ۳01۲
Commonly, a high degree of resistance to decay is maintained
Until the fruit approaches maturity. Resistance is reduced
noticeably as the fruit begins to ripen. Not only does the frult
become susceptible to its mast common pathagens when it
ripens, but it succumbs to attack by pathagens it was resistant
to formerly: For example, as stone fruits approach maturity,
they are increasingly susceptible to the main diseases of the
crop, including brown rot caused by Monilinia fructicola and
‘gray mofd caused by Botrytis cinerea. As these fruits
Completely ripen or become senescent, however, other fungi
such as Rhizopus or Penicillium species commonly cause
postharvest decays. In climacteric fruits, the climacteric rise in
respiration roughly coincides with a striking reduction in the
full’ resistance to many pathogens. Cellular senescence Is,
Induced in fruit injuries. Damaged cells have increased
respiration, and ethylene product fgesias "7"
leading to cellular senescence تت و هزم
susceptibility to fungal cofonizati fsisnnos
injures is discussed in the next s
صفحه 12:
اتزن باد ير فا ob obi
ش مفوتى وجو دارد كه از تفوذ تون و باسخهاى يس از
جلوكيرى يا جلوكيرى مىكند (به 1992 8403562189 مراجمه كنيدا. إن موائع يا
باسخ مقاومت ميزيان مى تند ماهيت ساختارى با بيوشيميابى داشنه باشد.موائع ساختارى
.بيش عفونى ميودها و سايرانداوهلى كياهى جدا شده كه در يربر حمله قارجى مقاومت Sg
اببدرم وهمجنين معمارى روزته (دهائههانى درابيدرم كيد كه امكان تباذل
كا ا فولهم مىكند) و عمق و تعدلد تريكومها (موهاى كياه). ابن ساختارها ممكن الست
تون مقاومت كتند ياه املاح محيط در سطح ميوه كك كتتد و
ميوه وا بيشت يا كمثر مستعد اثلا به عفونت كتند. علاوه بر ان مود شیمابی یش ساخته
اشده طبيعى (به عنوان مئال فنليك ها طرفهاى كليكو سيتوزنيك) يا بيش سازهلى أنها در
برشى از ميودها وجود دارد كه به طور بالقوه رشد ميكروبى را مهار م ى كند الب
615 كل (به عنوان oly a le بسيار ارج أور خا در مها
بیاغ هدن مود رییدن و لس دن بد بيار لحان مر
ویس یک موی سس مت میرن
ae Ss ae
clans JSS 98s ديواره سلولى (يابلاه) در محل نفوذ قا
رمتدر برایر خن در لیر مه کارچی۵/7۳۵00 6008 16 ۵۵/1۵/۲۵۵0 ۵۵7 06 0۵09۵۵1۵0۵
‘To establish an infection, the pathogen must overcome the
natural host defenses of the nonwounded frut. Essentially,
there are preinfectional barriers that prevent or inhibit
pathogen penetration and postinfectional responses to
disease development (see Adaskaveg 1992). These barriers
or responses of host resistance can be structural or
biochemical in nature. Preinfectional structural barriers of,
fruits and other detached plant organs that resist fungal
attack include the cuticle and the epidermis, as well as the
architecture of stomata (openings in the plant epidermis that
allow gas exchange) and the depth and number of trichrome
(plant hairs). These structures may resist penetration of the
pathogen directly or contribute to modifying the
‘microenvironment on the fruit surface, rendering the frult
either more or less susceptible to infection. Additionally,
naturally occurring presormed chemicals (e.g... phenofics,
cyanogenic glyco sides) or their precursors are present
‘within some fruits that potentially inhibit micrabial growth.
Often, total pofyphenafs (i.e. lannins) or specific highly
fungitexic compounds in fruit decrease as fruit mature, ripen,
and become susceptible to disease.
As indicated above, postinfectional responses also include
structural and biochemical responses. Postinfectional
صفحه 13:
على رشد قبل از برداشت. اكثر ميودها توانايى هبودى از أسيبهلى نالشى از
cael ges SY at pe steely دید از ول بولک خی
زنده REST A Vyas 8 clang ty ode یک سد از
la ie كه به زخم تبديل مىشوند و زير اب مى رده زخم را هید بخشد.
بعضى أز ميودهاء سلولهاى
عنون مثال. در بابايا سلوهاى ابيدرمى جداكاته ب توليد رسويات كلوز كه هيفهاى
ناف را در خود محصور مىكنند به هيفهاى عفونى ناشى از أبرسورياى قارجى
ادر ياسخهاى بيوشيميايى بس از عفونت, تركييات قارج أور كه قبلا وجيد نداشته.
ده منوا یک تیجه از حمله قرچیتشکیل میشود ان تکیت که
فيتالاكسين gg a ممدثا يوفى قنوف. يزو فلاونوليدها ا ين ينيدهاى
ع بيوشيمياى كياه فقط منفعل تيست بلكه Bp Jo
عامل بيماريا است. به هنون مثال. ارقم
BS gah شيمياى در بر
Cylindrocarpon mali (Nectria galligena) « pi. —
During preharvest development, most fruits have the
ability to recover from injuries by wound-lcaling
processes. A fruit injured from biotic or abiotic
‘agents, such as rubbing against other fruit, is usually
able to heal the wound by the formation of a barrier
fof cells that become lignified and subcrized. Thus,
the fruit effectively regains protection against
entrance of microorgan- isms. in some fruits,
individual cells may also form barriers to attempted
penetration. For example, in papaya individual
epidermal cells respond to infection hyphae from
fungal appressoria (swellings on fungal hyphae from
which infections are initiated) by producing callose
deposits that encase the penetrating hyphae (see
‘Stanghellini and Aragaki 1966).
In postinfectional biochemical responses, fungitoxic
‘compounds not previously present are formed as a
consequence of fungal attack. These compounds,
Called phytoalexins, are mainly pofyphenots,
isoflavonoids, or ter penoids. The plant's biochemical
defense is thus not merely passive but includes the
ability to respond with chemical defenses against the
invading pathogen. For example, apple cultivars
resistant to Cylindrocarpon mali (Nectria galligena),
{an important storage disease in Europe, produce two
to three times the amount of benzoic acid in
response to infection compared to susceptible
cultivars (Noble and Drysdale 1983).
صفحه 14:
هی كه به رشوهلى موجود در إبى كارب ميوه يستكى اند سکن
أست عفونت را مهار كد زخمها قبل از ناسون باه و وال
م شود زخوها أظب ديكر هر معرش حمل وب تین برش رین
gt) gl gus Ss ey se اه
ei Shp ig Bl apt ta el
مخلوط شده ودر قوس زخم قرار م كيرد ها ty le
een ils مور که سیم یندب
بفى فنوفهاى موجود در شيره سلول مخلوط مىشوند. قهوه اى شدن در
etl oy اكسيداسيون أنزيمى تركييات فتوفيك و زخم Sl a
وهای زد در مجيوحيث أز نر وليك يسيار فعال م شوند حلى لكر
برخم دود ار متك لست 0600901090015 م ل
وق ع مف ع لج بين
زغمهای ساققت شده سوب اه مشود مهار زین یرود
Pathagens that depend on wounds in the fruit
epicarp lo establish an Infection may be inhibited is
wounds heal priar to potential cofonization by
fungal pathogens. When fruits are removed from
cofd storage, wounds often are no longer highly
prone to lungal invasion. Some of this resistance is,
siinply due to drying of the wounded arca. But
Injured cells also respond by biochemical
‘mechanisms. Cellular contents are mixed and
exposed In the wound arca. Enzymes, such as
polyphenof oxidases, that are compartmentalized
when the cell is alive, are mixed with the
pofyphenofs in the cell sap. Browning in the wound
results from enzymatic oxidation of phenofic.
compounds and lignification. Living cells near the
Injury become very active metabofcally even
though they do nat show signs of major injury.
Repair is set in motion by these stressed cells.
Pofyphenof synthesis may lead to the accumulation
of greater quantities of phenofic compounds than
those already present. New compounds, often
similar to those that accumulate after infection,
‘may appear in the wound area. These may also be
polyphenofs. Compounds produced as a result of
wounding include some that are highly toxic to
fungl. Germinating spores deposited in such
"protected" wounds are either inhibited or killed
صفحه 15:
ممه زوه مه ممه توه ده مه 0060016 soomoeasens
ارشد ارج مولا واه زی اسآ مشود درک معط میب و تین کنده اد
متفه سان خم ميق سحي يط جيك ب اس سامت سا
شود وزدياة طول هيف حاصل مرشود به زمان زم وى جات ی تسه یک کی
gh مره تاره یشد کل ۱۷۳ رحد به دی به یک هه سر کب
رح و بویت مد نانک تن رف اه یقت
زان رسم میشود. شک متجتیرشد سیگموید با 5 میشود (شکل ۱۷۳ ر ند
Syne ony pt Jol pe در مقايسه با رشد در محيط كشت طولاقى ترا تأخير
خرن زرا سور Shy Ope She بايد بر مكانيسيعاى مقا
yang Boag Jd ghee pep ag prac of
مطليب تا هفتدها يا مادهادر دملى تزديك به حداقل رشد قارج ادمه يايد
Fungal growth usually begins with spore germination. in a
wet, nutrient-providing environment, spores of many
species swell, germ tubes develop after a few hours, and
hhyphal elongation proceeds. The time it takes to germinate
{and develop a tiny colony is called the lag phase (fig. 17.3),
Growth soon achieves a rapid sicady stale called the log
phase, which continues until growth is slowed, usually from
Autrient depletion, at which point the stationary phase of
the curve is entered. When growth is plotted against time
the shape of the growth curve will be sigmoid, or S-shaped
(see fig. 17.3). On fruit, the lag and log phases are usually
longer or delayed compared to growth on culture medium
because the spore must not only germinate but also must
fvercome host resistance mechanisms. Depending on the
fungal species, the lag phase m:
several days at optimal tempere
at temperatures near the minim
صفحه 16:
ره ۰۶ج رتخد هی درد شیر
در هی ار نهپ po yd pda Su aan
Hod sca pas wets jagalaes ban
Tirana ve iaatee ae
یت ات مت ها سمل سرا ار و تون در مرش خمای
ره Sea مر رپس رت و
کی دی 1۵2۷ در سرد ری ره ترا
ودبي اس درک مره
detiata ات اه فا ری متسه
وان ترات دما
a Se Sp Joh ft تطعا ob 9S on حمل وفلف
خمالى در حدود ٠ حرجه سانتى كراد 55 درجه قارنهايت) يا بالترداند و
یی i در مها بابين رشد كنند محصولات يافى فير حساس.
ابه سيما ابه طور كليمىتوآن به يهثرين وجه در كمثرين دما تكهدارى كرد از
Carp + سانثى كراد ) 71-1١ هرجه فارهايت)» ففط جند قرج.
EF Hel PE
Temperature is one of the cardinal factors affecting
{growth of fungi, most fungi are mesophiles that
‘grow optimally within a temperature range of 15°
to 40°C (59° £0104°F), Some fungi (thermaphiles)
respond optimally at higher temperatures. The
‘maxi, mum temperatures for growth are about 35°
to 50°C (950 to 122°F), but some species can grow
at higher temperatures. A few fungi are
ppsychrophilic, with optimums for growth of 0° to
17°C (32° to 62°F) but most are cold-tolerant and
can survive exposure to cold temperatures with
little growth. Most postharvest pathogens generally
{grow best at 20° to 25°C (68° 10 77°F). Effects of
temperature on growth or decay can be illustrated
by plotting growth or lesion diamcter over a
temperature range. The generalized effect of
temperatures on growth of M. fructicola as
‘measured by lesion diameter of decay is shown in
figure 17.4. Based on the temperature minimum for
‘growth, postharvest decay fungi can be divided
into those that have a tenperature minimum for
{growth of about 0°C (32°F) or above and those that
an grow at lower temperatures. Non-chiling
Sensitive horticultural crops can generally best be
stored at the lowest temperature said from
{recuing. Al-1* to 0°C (30° 10 32°F), only a few
fungi can be expected to pose difficulties.
صفحه 17:
مشهورترين أنها cinerea .5 است. به یهاگ خوره تكهدارى بيش ازع 9106
.باشد. 30305109 0007 بت یاری کیک ی
عهاى هرخنان بركري. همجنين ممكن لست تكران كننده باشد از ديكر موتك هاي
كه باعث يوسيدكى قال توجه در ٠ درجه سانثى كراد ۳۳ درجه هت
Cladosporium ,Alicmaria altemata = Jo.
gles Monilnia fructicola », درجهساتی
كراد (؟؟ درجه فانهايث) به كتدى رشد م كتد به طورى كه بوسيدكى هوه ی ال
Soule Joe)
رجه ساتی کرد (۲۳ در
وه مهار شوند. با ين
لكرج انها
شكل ١12 ميزان
By far the most notable of these is B. cinerea, particularly
if 3 the storage period extends for more than 3 102 4
weeks. Peniciliumapansum, the cause of blue mold
disease of fruits of deciduous trees. may also be of
concern. Other sungi causing significant rot at O°C (32°F)
include Alicmariaaltemata and Cladasporiumherbarum,
Moniliniafructicola grows so slovily at 0°C (32°F) that
visible brawn rot of stone fruits can be seen only after
excessive storage periods. Thus, fungi with a temperature
minimum for growth of -5° to -2°C (23° to 28°F) cannot be
inhibited by refrigeration without freezing the fruit.
Nevertheless, low temperatures are crucial to the
suppression of these fungi, because although they are
active, their growth rate is only a fraction of that found at
higher temperatures. Figure 17.5 shows the extent of rot
development in peaches after inoculation with spores of M.
fructicola and storage at selected temperatures. Thermal
death points of lung! are different for different species of
fungi, as well as for different growth stages such as
mycelium, spores, or survival structures, Most fungi are
sensitive to high temperatures. Thermal death points for
spores of many fungi range from 40° 10 60°C (104 to
140°F) for 10-minuteexposures.
صفحه 18:
Figure 75
on goth of Nonna facia eth ut. evden ly Marna et ts و
eto om ls ey ادوس سم ع ع
sf scorn
مر 5 4
Es \ BB
i \ Ea
Bas ! 2
ws =* 0
۳ ۰
a a wht te ew 8
Temperate Temper 0
صفحه 19:
انس رترب رت ی ان رز فلت تفگ
اكثي قلع بقث سوماتيك يستقى دود يرخى زعام ln يسار
nce tne cal یش دید سرد ۱ رد رن ند
“Aspergiids niger Rhizopus stolonifer wu?
ctolonifer cscs a شيعن امد ضح لي guys oe
ق کر hie curse nad seg
ای Sacre” هات بنیز ال ۱۷۶ امد
این نت که ان ات lop هرا با نرم زحي هال ففدان كل
امن هلوا ابر سرد اسه
Sena lop wll pre ar expo 19° G2 ماه
‘The effects of extreme temperaturcs, however,
depend on moisture content, metabolic activity, and
age of the fungal propagule or somatic tissue. Some
postharvest pathogens that can only grow above 5°C.
(41°F), such as Rhizopusstolonifer and Aspergillus
niger, have developmental stages that are sensitive
tolower temperatures. Although nongerminated
spores of R. stolonifer may not be adversely affected
by low temperatures, most spores that have started
to germinate are killed within several days at 0°C
(32"F) (fig. 17-6). This cold sensitivity, along with
wound healing, Is believed to ha rarnancinia Far tha
General absence of Rhizopus "gure 176
Femoved from cold storage,
(avout! ineubation 825°C (FPP eran om Wan
Sd Sommer 1967)
صفحه 20:
ی
اكثر قارجهاهوازى اجبارى هستيد كه موتوئند فلظث اكسيزن كم را تحمل كنند © و
ly COZ تنفس و رشد طبيعى UNV) gag lg a Fd Lge
20 سرکوب میرن بسياري أ حه درفب کال رش شعیی ار
له نی سور با یش فلت از ۱۰۰۰ با« هه ریب رای
06۲6۵ 50001666 .۳ زو بویا ۹۷۰ افرايشمىيابد اراين. رشد
کلی تست بهجونه نها به SPR GD Mec
اتوسط 01176 جو متوسط اسث. كه ولا یش J STNG
ا رو ل ا
5 19001066013 .04 سارو همان 4090 شه قبل توج اه
يا oe
زه خيلى كم در نظر كرفته مى شهد
Most fungi are obligate aerobes that can tolerate low
‘oxygen concentrations. 0, and CO2 are required for normal
respiration and growth. Although fungi are suppressed by
elevated (10-20%) CO, levels, many fungi grow poorly in its
complete absence because the gas is required in a number
of physiological pathways. Oxygen requirements of fungi
can differ between species, as well as between growth
stages ofa single species. For example, mycelial growth
{and spore germination Increase with Increasing O,
Concentrations from 0 104% or ۵ to 1%, respectively for B.
cinerca and A. stolonifer (Wells and Usia 1970). Thus,
‘mycelial growth generally requires higher levels (4x) of
‘oxygen than spore germination. Suppression of fungi by a
2% 0, atmosphere is modest, often no more than about
115% below the rate of growth in air (21% 02), as shown in
fig. 17.7 for B. cincrca and M. fructicola (Sommer etal
1981). Significant growth reductions result isthe ©, level is,
lowered to 1%, but this is generally considered too low to
be tolerated by most fresh commodities,
صفحه 21:
hl ly غلب احتمال أسيب J ats ply ag رف کوچکر اقب با
محمولات حساس بهکبودیاسفاه مشود
OGOEEEDEOT OF 000۵۵00667 DBOBYE BY PLYEION DOTMLODS ODO GOORODDBONE ۵
مدیریت پوسیدگی پس از کشت بر اساس روشهای فیزیکی و اصلاحات محيطى
CROP OR COMMODITY HANDLING
Basic cultural practices such as harvest dale (crop
maturity) and methods of harvesting have been
established for most commodities. A generalized flow
chart of postharvest handling and treatment of fruit
commodities is shown in figure 17.8. The most important
goals of all harvest and postharvest handling practices
are the prevention of injuries and the delay of crop
Senescence. Most postharvest pathogens enter fruits only
through wounds. Thus, handling practices can directly
affect the potential for decay to develop by allowing
injuries to occur. Specifically, mechanically harvested
crops provide more injured sites for infection than hand-
harvested crops (Ogawa et al. 1963a). Decay control with
chemicals is difficult and often impossible if crops are
already infected at harvest, unless a systemic fungicide is
Used. In addition, all efforts should be taken to avoid
bruising and wounding during transport 10 the
ppackinghouse and subsequent handling. Because bulk
bins often increase the potential for bruise damage,
smaller containers are often used for bruise-sensitive
crops.
صفحه 22:
lal be le بير شهن. مهم لست كه كالاه در اسرع وقث هر
درجاى ديكر اين فصل يابا جزثيات بيشثر در فصل 05 ار
lg De تنظيم رشد. مقر گنها ابر مود
شيمياى كه در توليد تبن تداخل ايجادمى كنندمى توت
ميزيان را كند كردة و يوسيدكى بس از برداشت را كد
tae ab gle oa aby laps بي
During the sorting process, itis important to
Femove all injured and decayed fruit that might
‘develop into foci for secondary infections. Proper
packaging to prevent bruise damage is especially
Important for fruit destined for distant markets
(Ogawa et al. 1972). Consequently, handling
procedures that minimize injuries enhance the
‘effectiveness of other postharvest treatments.
‘To delay senescence, itis important to cool the
‘commodity as quickly as possible to the lowest,
temperature that does not cause injury Low
temperatures delay senescence in climacteric and
nonclimacteric commodities by slowing hast
‘metabolism (this is discussed in detall in chapter
13). Modified atmospheres are also important for
Slowing respiration and other physiological
processes that delay senescence (this is discussed
briefly elsewhere in this chapter or in more detail in
‘chapter 14). Additionally, treatments with growth
reg. ulators or other chemicals that interfere with
the production of ethylene can stow senescence of
host tissue and reduce postharvest decays (see the
section Plant Growth Regulators" in this chapter).
صفحه 23:
صفحه 24:
اصلاحات محیط فیزیکی
ی
محيطى كه معصول در أن بكزار م شود معصول غير مستفيم و محصول ا تحت تائير ار
مود شنز سل ران ورد ع مريت شنک کنیا هو
هسكاران YT تاميسون 1391 كلش دما كه به محصول أسيب لمورساتد در مشيريت
أكثر موامل بيمارى زا نسيار مهم اس از جمله مواردى كه مى تود هر وكات كم دما رشد
Cincrea, M. pinformis was ماسر
ass age Gall تش از سوملزة ساي POS در ار سرد رخ Sarre
ag ig ange a میکرو مها اند و
لاج محيط قيزيكى شامل عمليا حوارتى اسث. معمولاً ايها درمائهاى كوناه مدث بيأى
موقل كردن أسيب رساتدن به كلا لست اصلاح محيط با تيمارها
اقا ۳9۵ :06 0:05 00001061000110
۵00۵0۵0
‘The environment in which the crop is held aller harvest
affects both the crop and the pathogen. Usually, quick
removal of field heat by hydrocooling or forced-air cooling
reduces the rate of ripening, as well as the growth of
‘microorganisms (Mitchell et al. 1972; Thompson 1992).
‘Temperature reductions that do net injure the crop are
critical in the management of most pathogens. including
those that can grow at low temper atures, such as M.
pinformis and B. cinerea, because the rate of grovith of
these fungi is greatly decreased. When chilling or freezing
Injuries occur in cold storage, however, fruits may be
predisposed to infection by microorganisms. Other methods
for modification of the physical environment include heat
treatments. Usually these are short-term treatments to
inactivate the pathogen or pest without damaging the
commodity Modification of the environment by chemical or
biological treatments that are inhibitory or antagonistic to
the decay-causing organism is also an important strategy
for postharvest decay management. Various aspects of this,
strategy are discussed in later sections.
صفحه 25:
ذخیره سازی دمای سرد.
چ۹
ابراى JAS بيمارى بس از يرداشت بسيار حباتى لسث به طورى كه ساي
وشهای کنترل به alle alg ناب توصي شدء ند دون به i ادن
ار رات مهم است.مای بان رشد آهستهآهسته و هر بو
0 سي ge,
زد حدقل دما بای رش قارع وت جابی ات که قبل از ممرق
jose asian gid دست nfl زي امن ده pe در سین
a ag Jot اب دما ای تب
فيزيولوزيكى من a ape aE ale onl ht
Och! teepercture rior
‘Temperature management is so critical to postharvest,
disease control that all other control methods have
been described as supplements. Without minimizing the
importance of other control measures, it can be said
that temperature management is central to all modern
postharvest handling systems. Low temperatures slow
sungal development and maximize the potential
postharvest life of the commodity. The ideal objectives
of refrigeration for disease control are to lower the
temperature below the minimum temperature for
{growth of the fungus and to a paint at which infection
development will not be completed before the fruit is
consumed, or, in the case of cold-sensitive fungi, to Kill
the spores while they are Germinaung. These ideals are
often unattainable because the pathogens often
tolerate lower temperatures better than their hosts.
Pathogen development is merely delayed by the low
temperatures that are best for maintaining the fruit in
good physiological condition,
صفحه 26:
صفحه 27:
كال در يجال. رسيدكى به ميومهلى بدون دلايل بسيار ضرورى
أسرع وق برداشته شود و ميوهها در كمثرين دملى قبل تحمل كالا
خنگ شون اهمیت دشر وری درجهحرارث سرد ری میراد شکل Wo EWA
ده اسثد تاتدها شان مهنده مقدار رول قهوه لي شكل “فته حر هلو بس از تأخير
اسازى ميوه لست ياتفيير در تلفح با لسيورهاى 1,2110013 .4 ميوهيا بافاصله هر
دماى ٠ درجه سانتيكراد(؟؟ درجه فارنهايت) قار داده شديا تدا هر ٠١ درجه ساننيكراد
اك درچه فرهیت) kM cas سا ذخیرهشد و سپس در هرجه سالتيكراد قو
كرفت . بس از حذف از انبار سرد و رو اكوباسيون هر ١3 هرجه ساننيكراد (٩۵درچه
فارنهايت» لبماك بيمارى قايل مشاهده بر روى ميوه ى كه بلافاصله در * درجه ساننيكرلة
5" درجه فارنهايث) قا سل که گیب رحتیفز
بنمیرفت. در سوه دیگر دبا پس از ۶ روز گفته شده شا میدهد که جع تدك فاق
ممكن اسث به ضابعا تبديل تشوتد زیر خک شدن بهسرعتکای ام یشود. جوا
زنى اسيور يسيار كند الست و ممكن لست در حداقل دما راى رشد قلرج ار بين
قلتان که در
اجيز عمل م ىكتفد.
‘To obtain the full advantage of refrigeration, itis essential
to handle fruits without delays:
Field heat should be removed as soon as possible, and
the fruit should be cooled to the lowest temperature
tolerated by the commodity. The importance of
immediate cold temperature storage for fruit is illustrated
In figure 17.8. Data show the amount of brown rol that
developed in peaches following delay's in fruit cooling
Alter inoculation with spores of M. fructicola, the frult
were either placed immediately at 0°C (32°F), or were
first stored at 20°C (68°F) for 24 or 36 hours and then
placed at 0°C. After removal from cold storage and 3
{days of incubation at 15°C (59°F), visible disease lesions
had not developed on fruit that was immediately placed
‘at O°C (32°F), while decay was easily recog. nized in the
‘other fruit. Daia taken after 6 days show that the cllects
‘of delayed cooling extended into the normal marketing
period, & high percentage of spore-contaminated wounds
may not develop inte lesions is cooling is sufficiently
prompt. Spore germination is extremely slow and may fall
car the minimum temperature for growth of the fungus.
Processes involved in establishing the infection are also
‘only marginally functional near growth-stopping
temperatures.
صفحه 28:
لغيه اس در تچهممکن ات منجر به عات رج لو.
قارئهابت) باشد اولين خنك سازى تا * درجة
سركوب قارجها تفريي امل لسث. یات
پوسیدگی ناشیا قارجهای حسلی ب سم مسکن است رای هیده
موق شود جلب است افيد براق به ات سفن عبر منم شک
شدن در این تین درجه حیرت یمن آمریپیشرفته اس
Low temperatures, while the fungus is still in its
carly lag phase of growth, may consequently result
Inlewer fungal lesions and delay their
development. Even if subscquent transport is at
about 5°C (41°F), there are advantages to first
‘cooling to 0°C because suppression of fungi is more
likely to be nearly complete. Decay lesions caused
by cold-sensitive fungi may be permanently halted.
Funhermore, tocool to the lowest safe temperature
is advaniageous for maximiz يي
صفحه 29:
فر جند سال كنشته تمايل به درماتهاى حرارتى يس از يد
یش بات هس ین ند تلا برابياقتن aly clare جرمان هاي شيمياي ب أو
أب كرم محدوديشهاى جدى دارند و مى تواند به طور بلقو يه ميوه أسيب برساتتد يا رتك
Vij shew bl
‘Ded ond همطل
In the past few years, there has been an increasing.
interest in postharvest heat treatments for management
of fruit decay's (Barkai-Golan and Phillips 1991; Lurie
1998). This interest is in an effort to find alternatives to
postharvest chemical treatments or to enhance the
effectiveness of postharvest fungicide treatments. Most
commodities tolerate exposure to water temperatures of,
50° 10 60°C (122° to 140°F) for longer periods than
most fungi. Still, ht water treatments have serious
limitations and can potentially damage or discolor fruit,
shorten storage or shelf life, and increase susceptibility
to pathogens. Additionally, the treatment does not
provide any residual activity against recontamination of
the commodity, and it retards subsequent cooling of the
fruit. Hot water treatments may be noneconomicai
considering the emphasis and effort that are placed on
removal of heat fram commodities in cold storage. Hot
water dips can be used alone or in combination with
chemicals to reduce anthracnose of mangoes (Coates et
al. 1993) and decays of stone fruit crops (Smith 1962;
Wells and Harvey 1970),
صفحه 30:
I felt ey Jy Jar igh ods اسطادهم كود حدق از لفن
ای فو فشار لست الرات 82 ير روى يمار هلى بيس از
ی
ais 1
ی 80007501
Carbon diotide, carbon monoxide, ethylene, and other
gases such as ozone, Additionally, hypobaric
atmospheres have also been used to extend storage life
and consequenty to suppress decay, Ia close control of
these gases is maintained, the synthetic atmosphere is
commonly called a controled atmosphere (CA). Modified
atmosphere (MA) is term that may desig nate any
synthetic atmosphere, butit often is used if there is tle
or no possiblity of making adjustments in gas
Composition during storage or transportation, The
purpose ofthese atmospheres is usually to extend the
{ruts postharvest Iie by suppressing the rate of
respitation. Another objective isto sup press diseases.
‘The effects of MA on postharvest ciseases canbe either
indirect or direct. For example, ethylene has an Indirect
effect on decay by affecting the ripening ofthe
commodity Ettylene concentrations can be reduced in
storage atmospheres by using "scrubbers" (ethyl. ene
tliminetors), ezone treatments, or by lowing frat
metabolism in controlled atmospheres or temperatures.
صفحه 31:
سا ل رفن علد ات بل د
دربن هت رس عم مد رو
ادى اكسيد كوكرد يلمسيد استيك (50101609 و هسكاران.
كسيد كرين و محيطهابى 19/606816 اكسيز
قرچی مود تا است. ارات کم کننده 0 کم در مها متخص شدن ۵ در
کاهش میبی میا در سطوح بايين ترافزايشمىبابند هر ليرهاى لت
سلج 0 معمولً در حدود 057( حلظ مىشود. هماتطور كه هزيلا ذكر شد فلظتهل.
OTE سرکوب رشد قارج موثر است (شكل 107 را ببينيد.
Maintenance of the fruit in good physiological condition
may result in a fruit with considerable disease
resistance. Oz. CO2, and CO can have direct effects on
postharvest diseases. Thus, because the fungal
pathogen requires Oz, as does the fruit, lowering the 02
or raising the CO, or CO concentrations can slow the
‘growth of a fungal pathogen. Only modified
atmospheres that have a direct effect but are not lethal
to the pathogen will be discussed in the following
sections. Fumigation treatments with fungitoxic gases
such as sulfur dioxide or acetic acid (Sholberg et al
11996) are discussed under "Management of Postharvest
Decay's with Chemicals." below. Oxygen reduction,
carbon dioxide elevation, and hypobaric atmospheres.
Oxygen is required for normal respiration of both the
fruit and the fungal pathogens. The benelicial effects of
low 0, on fruit become evidentas O, in the atmosphere
is decreased to 5% or below: benefits increasc at lower ,
levels. In CA storages the level of ©, is commonly.
‘maintained at about 2 to 3%. As mentioned above, 2%
0, concentrations are only modestly effective in
صفحه 32:
ی
هوا معمولاً حاوى حدود 1/۰۲ 0 ترتع ۳0 پیش از نس
محبوسی سرگوب میکند ار فلت 1002
نیع یشوه و نرب هبوت
مان و دما ارتباط دارد ميوه مقادي يسيار بالاى 002 (بيش از 0/7٠ را
ls بین ۳ درجه ساننيكراد تا ا رجه سانتيكراد (70 درجه ساتنيكر
1 هي 00 دش ام هل کل یگ بو کسترده ی ورد
ار میرد در درجه ال بای سرکوب 610663 .8 قاب خاکستری) و 1
frucicola (rou brown) و بای سیب 606/۵۵ :9 توت بر
Air commonly contains about 0.03% CO... Elevation of Co,
above about 5% noticeably suppresses fruit respiration. If
the concentration of C02 is excessive, however, of-flavors
develop and fruit injury results. The relationship of CO,
Concentration to fruit injury is related to time and
temperature. Fruit tolerate very high levels of CO2 (more
than 20%) for several days at temperatures between 30
and 5" (380 and 41°F), but few tolerate those elevated
concentrations if storage or transportation in the modified
‘atmosphere is extended for several weeks. The addition of
10 to 15% CO, at a temperature of 5°C (+1°F) commonly
affects both host and pathogens in a manner roughly
comparable to a temperature of 0°C (32°F) in air. CO2
added to air is widely used in transport of Bing cherrics,
primarily to suppress B. cinerea (gray mold) and M.
fructicola (brown rou), and it is used with strawberries to
suppress B. cinerea.
صفحه 33:
هی ات کر توس ما تشر زو برس ید
شام یت نسی 0ب تبرت ما سای ره
تست ده ای بت رو وت ما و
دم وت هرا
كد raced ی
ارم لاسکی مر
اشدن يسيارى از كلاه يسيار كوت باشد نا بتو
پوسیدگی اش
Humidity Water vapor is a gas that constitutes
an important part of the atmospheric
environment of harvested perishable
commodities. Its amount in the atmosphere as
2 percentage of saturation (relative humidity: or
RH) varies widely with temperature changes,
Although the RH of storage facilities is generally
ever at saturation, free water can occur on the
surface of commodities. Liquid water forms is at
any time during the normal temperature cycling
within a refrigerated storage room the
temperature of the commodity surface falls
below the dewe point temperature of the
atmosphere. With pathogens such as 11.
fructicola, saturated atmospheres or water on
the fruit surface favors spore germination and
direct penetration of commodities. With
jacketed storage or packages with moisture
barriers of plastic film, high RH may be a factor
in promoting disease is temperatures are
favorable,
صفحه 34:
0806۷۵ 60۵۲۲۲۷۵۵۵۵۵۲ 06 20866۵6866060۲
CLEOICOLS
پوسیدگی در پساکشت با مواد شیمیایی
Presently, chemicals are essential for protecting food
quality and for preventing crop losses from decay (see
Ogawa and Manji 1984). Fresh perishables need
protection from the time of harvest until the time of
consumption or processing. Without chemicals much of
ur produce would never reach the consumer. The use of
chemicals is a method of modifying the environment of
the fruit surface either by removing inoculum as a
sanitation practice or by inhibiting the growth and خرن وید دنق اه سس ري زع اها يان الريك ملت كارت رطق
reproduction of plant pathogenic organisms by هر بيش از يك دسته قرار م ى كيرند.ماتد يهناشث و هرمان. در يندهاى يعدى. مواد
prevention (e.g., protection), suppression, or therapy of
infections. Suppression is the inhibition of development,
whereas therapy is the eradication of established
infections. Some treatments have more than one mode
of activity and thus sit into mare than one category;
such as a sanitation and protective Treatment. In the
following paragraphs, chemicals will be discussed in the
section That best describes their usage. Chemical.
treatments of hanesicd produce must be used properly
for greatest effectiveness and salary: The current status
of chemicals available for postharvest use and methods
Used to obtain effective control of postharvest decay will
be discussed. Some of the early postharvest treatments,
that do not met modem safety standards are no longer
شيميالى در يخشى كه كاربرد آنها را به يهثرين وجه توصيف مىكند. مورد بحتقرا مر
صفحه 35:
صفحه 36:
ras ‘one ترس سس
هم سوت ‘patent 6 Ivete ena
yn te within op nin ave
اه مسج سوه
تمه سر
سس مرح
۳
مه Paki rs. 3-3 اس
ري سدسم م
مومه ha مايه
ap اا Gps 189 لوس فامسعة
|
صفحه 37:
وهای هداشتی ال دننهایی آست هبامت گاهش جمعیت میک
توليد. ميوه وب شستشو ری تب ردن یه مشود.شسنشوی اب ه هی مود
را از سطوح توليدى كه به "ميكرواراتيسمها” امكان رشد ميدهد. حذف مىكندو
أزدرمانهلى بهداشتى. بتانسبيل مجدد برا
1 sm gad بوسيده از سعلح ميودها ا كافش م دهند شامل lope a
لسبورهاى حاصل از ميوه يا خاک را فيرفعال كرده وا اتنشار تنوه تلفيح در آب جلوكيرى
م ىكند تمونههابى أز مستشوىهاى ضدعفوتى كتنده شامل تركياتهالوزنه ايه عنوان
مثال. اسيد هيبوكلروس از كاز كلي يا سديم هييوكلريت و كلو دى الكسيد كلر) و أب لزن خار
درمانهاى بهداشتى براى تجهيزات و أمكانات ذخيره سازى شامل شستشوهاى Sal
أمونيوم کات و بو با كازهاى سمىدراى عوامل بيمارى زاى قارجى مائند قرمالثيد و
eons
660011511000
Sanitation practices include treatments lo reduce
populations of microorganisms on equipment, on the frult,
‘nd in the wash water used to clean the fruit. Water
washes alone will remove nutrients from produce surfaces
that allow’ microorganisms to grow and it also removes
Inoculum of postharvest pathogens. Without the use of
sanitation treatments, however, the potential for
reinoculation of produce is high. Sanitizing treatments
Include treatments that are used for frult and equipment
and treatments that are used only for equipment and
storage facilties. Sanitizers that reduce inoculum levels of
decay organisms from fruit surfaces include treatments
added to water dumps and spray or dip washes. These
treatments inactivate spores brought into solution from
{rut or soll and prevent the secondary spread of inoculum
In water. Examples of sanitizing washes include
halogenated compounds (e.g., hypochlorous acid from
chlorine gas or sodium hypochlorite and chlorine dioxide)
‘and ozonized water. Sanitation treatments for equipment
and storage facilites include quatemary ammonium.
washes and fumigations with gases toxic to fungal
pathogens such as formaldehyde and ethylene oxide.
صفحه 38:
صفحه 39:
صفحه 40:
شوی بهداشتی
كلرزنى محلويهاى أبى حاصل از هييوكلريت سدیم( 130 هیکرت کسیم
ts HOCH pot Ch gs jou CalOCH2)
م كنت از أنها در جايجانى ميوه يس از ار یس بهداشتی با
استفاده ا اسيد هييوكلروس يكى از موثرتين» زان تین و یبای ماد تین
oy Se fog a نلشى از اب شستشور سطع ميودهاى فير أسيب د
ى به سرعث و به طور اختصاصى مواد كيينى را ذر محلو هاي
ی کسید میکند و در یه فلت قرع كل وشح باكر ليجل كد لول ماق اس
أنكه بتوائد عامل بيمارى زا ا فيففال كنم به سرعت در مواد مخدر ميوه كاه
ple age کات کسید گنه مان دی کسید کار بان درب از زن ا ای
او وجود مواد ألى و فير الى
۱۱۵6۱ + 0۷دلاح> NaC! + H,0
فيدر وكسيد ديم جنا شذه و 014 با 1400 خنتی
يوتهاى خود در تعادل الستد
HOC! <> HR + OCI
كا
Chlorination. Aqueous solutions obtained from sodium
hypochlorite (NaOC!), calcium hypochlorite (CalOCH2), oF
Chiorine gas (Cl) produce the microbial biocide hypochlorous
acid (HOC). They have been used extensively in postharvest
handling of frut. Sanitation using hypochlorous acid is one of
the most effective, inexpensive, non residual ways to reduce
‘microbial contamination from wash water, noninjured fruit
surfaces, and equipment (White 1992). Hypochlorous acid
rapidly and nonspecifically oxidizes carbonaceous materials in
‘aqueous solutions, resulting in fungicidal and bactericidal
‘activity. Solutions of hypochlorous acid, however, are relatively
ineffective in reducing decay ifthe inoculum is inside the
wounds of the fruit. The compound is rapidly reduced in fruit
Indunas before it can inactivate the pathogen. Other oxidizing
compounds such as chlorine dioxide, ozonized water, or azone
{gas have similar advantages and disadvantages in decay
‘management. Three factors control availabilty and activity of
hhypochlorous acid: pl, temperature, and the presence of
contaminating organic and inorganic materials. As sodium (or
Calcium) hypochlorite is added to water, hypochlorous acid and
sodium hydroxide are produced:
NaOCl + ۱۱۵ <>NaoH + ۵6۱
The sodium hydroxide dissociates and OH Is neutralized with
HCO, that naturally occurs in water. Based on pH, hypochlorous
صفحه 41:
LOCI , HOC! ("OCH Js مقبار كل
هيب وكليوس يا كلر الي يك تركيب ضدعفونى كننده موثر لسث در حالى كه 06 شد
عفوتى كننده ضميفى است. غلفات كلر فال بتانسيل الكسيداسيون محلول و قهرت
ضدعفونى كنتده أن راتعيين مىكند در 01 بالا مقدا كل قعال به طور جشسكيري
كاهش مويابد ا لين وجود. 4م كم (به نون ما 3۰6 )جرب را شدن کر به
عتوان كلرامين شواهد شد هر «PH 2 Se LPH کار کر( Sede
که سار میا یت استه در حالت ايده آل سطح EFS gu PH !يايد حفط شود
هييوكلريت در ملول وجود
بات کر زد نیت ه شپایط یه ل مود تا استه یک مجدود 8 10 Seas PHT
حفط وقايل قبول لست. علاوه بر اين ]م بار ياعث كاهش تشكيل كارلمين هلى فر
‘Thus, the pil of the solution determines the proportion of
"active" chlorine, as opposed to the "inactive hypochlorite
lon (OCI). HOC! and OC! together represent the amount of
"free" chlorine. Hypochlorous acid, or active chlorine, is an
effective disinlectant compound, whereas OC! is @ poor
disinfectant. The concentration of active chlorine
determines the oxidizing potential of the solution and its
disinfecting power. At higher pH, the amount of active
chlorine is dramatically reduced. & low pH (e.9. pH 3-6),
however, wl result in the volatilization of chlorine as
chloramines. At a very low pH (c.g. pH 2), chlorine gas (Cl)
will be formed that is highly toxic or lethal. ideally pH
levels between 6.5 and 7.5 should be maintained, because
In this range equilibrium exists between hypochlorous acid
and the hypochlorite ian in solution. Under packinghouse
conditions, a pH range of 7 10 9 is commonly maintained
and acceptable considering that longer exposure times or
higher concentrations of free chlorine are required than
lnder ideal conditions. Additionally, a higher pH reduces
the formation of volatile chloramines, which are eye
lnrtants to packinghouse workers.
صفحه 42:
مر لت سید هروس و زا تعاس تز ی یرد
eS BU Bok ae مرش هوا نهر استهحرکت. اما
.بيشثر أسيد هيبوكلروس رخ مى دهد. كالاها ا متوان در
سانتكراد (15 درجه فارتهايت) شستشو دا (هيدروكولرهانى كه در ای
كر كل - كل زد كر فال + ار )اتکی
كلر تركيبى شامل تشكيل كيروأميدينهاسته
HOCI + RNH, <> RNHCI + ۵
yh ni any Se تیستند gl Je gal مها دز
عيض چند ثانيه به كلرقعال در أب تميز واكنش Sleep aS
ل( ٠٠ درجه سانشيكراد يا د درجه فارنهايت) ومواد آلى موجود در أب
ین افت کر ال را رد
‘Temperature also affects hypachlorous acid
concentration and contact times: shorter
exposures are required with warmer temper.
atures but greater volatilization of hypochlorous
acid occurs. Commodities may be washed at near
(0°C (32°F) (hydrocoolers used in fresh market
commodities). 5°C (41°F) (dump tanks), or at
ambient temperatures. The effect of pH and
temperature on the amount of available chlorine
is shown in table 17.3, Furthermore, organic and
inorganic materials suspended in water, includ.
inglatation salts that are used in the pome fruit
industry, may interfere with the oxidation of
microbial inoculum. At high levels of these
‘materials, longer contact times or
higherconcentrations of hypochlorous acid are
required for disinfestation. Nitrogenous
compounds (e.g... amines, ammonia, and amino
acids) in the wash water decrease the amount of
active chlorine and may result in the formation of
Undesirable combined” chlorine, The amount of
chlorine in wash tanks can be described as:
total chlorine = free chlorine (active chlorine +
inactive chlorine) + combined chlorine
Combined chlorine includes the formation of
chioramines (NHC ا(
HOCI + RNH, <> RNHCI+H20
اد برس aca
صفحه 43:
‘Additional factors affecting the activity of chlorine
solutions include the type of microorganism and ميد ل لشاقى موثز ب قغاليت متعلول هلق كا شل نوع ميكروار كفيس و من
Contact time. In general, higher concentrations of ماس اسثه به طور كلى, فلت هاى بلاتر كلر فال متجر به غيرقعال شدن
active chlorine result in inactivation of microbial جمعيث ميكيوبى با زمان تعاس كوتاهتر مى:
‘populations with shorter contact times. 5 ميكروا كيس وهابى كه ساختارظلى زنده مانمن با دبا
Microorganisms that form thick-walled survival تک رت را go lang ae
structures or spores, however, may require longer اشته بش كرجه راي أز بين يردن اركانيسوعاى فر حال تجزيه.
Contact times for disinfestation. although بر ی سا ره Hod یی aes
‘minuteconcentrations of 1 ppm HOCI (1 ppm ot Fan geaNaOCl porn HOCL 3a ye tactan hs
active chlorine) are required to kill decaycausing 2
‘organisms in clean water in the laboratory, higher جب خورده میور بشتر تج 910۱ DBM
مى شود براى جبران a lB al Sh مقدار مخصول تصفية شد concentrations of 25 ppm HOCI from generic NaOCl!
وموك الى جمع شده در أب شستشو در طول تيمر برجسسعاى خاص محصول ppm from labeled NaOCl are commonly | ١ 200 10 50 ۲
Sak شده بای فده در کی معین را تین میکند sed for most commodities to offset changes in the
و
‘amount of crop treated and organic matter
accumulated in the wash water بي ل ين
Specific crop labels determine. Table 173.tfecrol pi and epee on const of acne
registered for use on a given و 09
scent tv ore
3 awe awe
0 ore, sen een
‘ 5 a 68
: we ۳ Ba
: 3 2 1
صفحه 44:
Chlorine dioxide is another biocide that has been evaluated as a postharvest sanitation treatment. This
compound is as effective or more effective than free chlorine. Because it does not mix with water, it does
‘not react with ammonia to form chloramines or with organic compounds to form trihalomethanes (THM)
Such as chloroform, Furthermore, chlorine dioxide is relatively unaffected by pH in a range of 6 to 10
Unfortunately, there are several disadvantages - 10 chlorine, Including:
+ Because the compound needs to be generated on-site, itis generally more expensive than chlor.
+ Some generators produce free chlorine (in addition to chlorine dioxide) that may also react with organic
‘materia to form THM.
+ Although chlorine dioxide does not produce THM, the compound produces its own set of breakdown
‘products (e.0. chlorite, chlorate) that may pose a direct threat to human health
+ Simple assays for routine evaluations of concentration are not available.
+ Chlorine aioxide is toxic to humans, and it commonly forms noxious odors.
Thus, chlorine dioxide must be used in closed systems or in well-ventilated areas away from packinghouse
workers. Because of these concems, recommended rates are less than 1 ppm; however, rates of 3 to § ppm
Probably the best usage of chlorine dioxide is in foams for washing and disinfecting equipment.
ر اس كه به عنوان يك روش بهداشتى بس از برداشت محصول ارزيابى شده اث
كران اجا م كند يبا تركيات الى تشكيل نرى هالومتانها ماتد كلروقرم ماه بای دی كسيد كثر هر محدوفه لا
تست نحت تأر 6 قار نم ى كيرد ستأسفه. جندين معايب وجود كار - ٠١ دی آکسد کل ازجم
5 مکند عله يردي الكسيد ركه سكن ست با مود الى نيز ونش ناد
* كرجه د ىأكسيد كلر THM توليد نم وكند اين لركيب معصولات تجزيد لى خاص خود ا ويد م ىكند ويه
ل سمه يجلد موكند
دو از كلركان بسته بندى استفاده شو
مق رل ری کر مر patel
fpf a ay MS lJ ب
صفحه 45:
ی
تركيب يكى از قوى ترين هوامل اكسيد كنتده الست كهديه
طو مصول در دسترس |
حدود ۱۵ یه است. مشاه دی اکیدکلر PS ph ple ap alg Joe pal
رای از ین برد 1۵زهک) رای ۵ حقيقه غرار كرقئن هر مترض لسبيويا كوديا نت
ترتيب 094 909+ جو محاميه كردن a aly i) كندده زخم as GME
رمان (انند كلر و دى ايد كثر) ناتوان بو ازن يه طور كلى توسط ماهر
تخاب تم شود. لما تجزيه أن با ag SUP از © ملا افزليش مىيايد.
اش موی هنوز هم سکن مت جک م23 9 رخ دهد
سیر سریع اس (سفید 61۹۹۲ آب شستو همچتین ی ری شدعفتی هن زنل
مخطوط و یار شود ان مستیم از 1۳۱۵ ند تین ارچه در صورت وجوهالزن در
ایر روشهای ضدعقونی کننده
اهب تلود Otker
Ozone is another disinfecting agent recently utilized in
postharvest water sanitation systems. This compound is one of
the strongest oxidizing agents commonly available. The
‘compound is unstable at ambient temperatures and pressures,
with a halflife of about 15 minutes. and it decomposes to 0, a
temperatures greater than 35°C (95°F). Similar to chlorine
dioxide, ozone must be generated on-site. Sports and
Cervantes (1992) calculated LD, values (lethal dose to kill 95%
of spores) for a $-minute exposure of spores of Mucor
pirformis or conidia of Bourytiscinerca as 0.69 and 0.99 ppm,
respectively. Ozone was ineffective for disinfesting wounds of
treated commodities (similar to chlorine and chlorine dioxide).
Ozone is generally not affected by pH within a range of 6 to 8,
‘but its decompasition increases with high pH, especially above
pH 8. Disinfestation, however, may still occur at a high pH
because the biocidal activity of the compound is relatively
rapid (White 1992). Wash water must also be thoroughly
‘mixed and filtered for optimal ozone disinfestation. Ozone
docs not directly from THM, although it may form them
Indirectly if halogens are present in the wash water.
صفحه 46:
Furthermore, azone does form a number of non halogenated byproducts. The most serious drawbacks of
ozone use include:
+ Ozone is lethal to humans with continuous exposure at high concentrations >+ pom): thus, detectors are
required for automatic shutdown of the ozone generator.
+ Ozone is highly corrosive to common materials and often requires stainless steel containers.
+ Ozonated water must be filtered to remove organic and other particulate materials for effective
disinfestation,
Cationic detergents such as quaternary ammonium compounds, isopropy! alcohol live steam, or hot water
{are currently used for equipment disinfestation. Quatemary ammonium compounds are not effective in
Feducing decays of fru, but they are widely used in food-processing plants because they are microbial
biocides with high water solubility and detergent properties. They also have low mammalian toxicity and
are generally noncorrosive at recommended concentrations. The efficacy of live steam depends on
tenergy during short exposure times. Extended exposures to heat treatments may injure the commodity.
Isopropyl alcohol is less commonly از محصولات جلبى غير هلوزن را تشكيل مىدهد اسلىترين مياد استقله رازن عبارتد لوهلا las gl ple
و كردن خو دكار زر انب تساه یاس
و وا خر
زوا ها زيست كشرهلى ميكروى باخاصيت حلاايث در ا
iy fan بدي بساح أيه
baad Spf dled of ند هگن آست رزی رای کشنده كمي رار زم بو قور رقن ع عرش که درد ار رشن در مرش وی مت
هر ریم لیات حراتی سکن اس بلعث صدمه يه كالا شود ازور وبي الكل كمتر مورد استفاد قار مى كيرد
رد عق عع را تعن مدان دا كيد وي
صفحه 47:
ی
Sega fl ys np lend yb Jad el lag sl
sgl سولو امن بات در حفظ و تگهدری از وی بای یههای نک
Jo بو و gd محملات بسنگی بهمسیت ly Sal لنت أسظائه أ
54 در محصواتی ماد نكور يا تمشك. برخى ارقام نسيت به
یک روش سار در حین نهدری
ادن کایترهایخدل و تقل در یمهس رجا که ان خرن ای gar
ورهاو ميسليوم هوابى قارجها مانند 100188 .8 قارجى است, مىتوئد تلفح رأ رو
سطح ميودها غيرقعال كرده وازلانه سازى يا وسيدكى ميودهاى سالم مجلور ميودهاى
وس گنوی کند. بای سمل فرمان پگ ای اقلا درم
ape Bad ARH sage aS ge eS os حشيه إن بودلدء
استفاده از بخور
یایی
ذارد لسيد سولفور سمى به رأحنى از آب كارى هر أب تشكيل مى شود و بركشت تإيذير بع
يروتلينهاى سلول متصل مىشود. به طور معمول. ٠1١ تا ٠.3 درصد (حجمى) كازيرد 50
مدت ©202١ مقيقه در لسع زقت بس از برجاشت وب بل آن اور 3ب مدت.
8-1 دقيفه هر نا ٠١ رورش اتبارانجام مى شود غلظتهاي معمول eB) pas
١ 50) كه در فواصل مكررتراستفاده شود (1 روز كمتر) كنثرل يهترى در عفونتهاى
Sl توع نكور. علالم أسيب نشان مودهد كه توشها جه مقدار
یل Sp eta pt toh etal By
بان اد در اتاببسته بدی اسب gant yay of 502 رب ای انز
دقت شو. نایک نگور در مدت زمان ig
02 استفاده موشود
دصي سیخ با سنوی
Other inoculum-reduction treatments include chemical
fumigation to in enclosed areas. Sulfur dioxide (SO) has been
used since antiquity in preservation, especially for dried frut. IIs
Use on crops, however, depends on potential phytotoxicty and
crop tolerance to the treatment, In crops like grapes or
raspberries, some cultivars are tolerant to SO, fumigation. The
treatment has been a standard practice during storage or for
fumigating transportation containers in California since 1928
acob 1929). Because the treatment Is fungitoxic to spores and
aerial mycelium of fungi such as B. cincrea, it can inactivate
Inoculum on fruit surfaces and prevent nesting or decay of
healthy fruit adjacent to decayed fruit (Nelson 1958). The
treatment dors not, however, suppress decay In fruit that was,
Infected prior to treatment. Sulfur dioxide is more ellective at
high RH. The toxicant sumptuous acid is readily formed in water
from gaseous SO, and irreversibly binds to cell proteins.
Typically, a 0.1 to 0.5% (by - volume) application of So, for 20 to
30 minutes is made as soon as possible after harvest followed
iby a fumigation of 0.25% for 30 10 60 minutes every 7 to 10
days in storage. Generally lower concentrations (0.05 to 0.19 of
0, applied in more frequent intervals (<7 days) gave better
Control of Botrytis infections(Nelson and Baker 1963: Smilanick
‘and Henson 1992). Depending on the variety of grape, injury
symptoms will begin to show when the berries have absorbed
2010 55 ppm S02, Because of the high polarity of the toxicant,
Was riaiaine مد دح وی ی ی ی
صفحه 48:
ج11 ا وى جه ub tiara satis
مک بم مع یتاعاس هت 01
ساي همان هاى يغور ذر ماطق محصور شامل لسيد استيك و اكسيدان هي
در SS ty ae مد ات تون
دهد( تیجه بات کلهش تقیع در جو یو وهای
يزه محلى برأى eats
شهاى بخور اجازه مىدهد تا اسيورهاى بنسيليوم ا از بين برد
از سرد كردن در بسته يندى مركبات. ب محدوديت دوبرنا
sight hand enn lbs ip ph dab
a as at كوكرد تيا است. يخارات اسيد لسنيك اخير
قارجى براى كتثرل عوامل بيمارى زاى سيب و اتكور
استاكين استفاده شد الست يكور سفره. اسيد استيك به طور كامل جوت
زتی لسبورهاى 0673© 808/615 را كه روى سطع ميوء خشك شد
نش مهار میک در ای كا كتفول ووسيدكي ريه 9002 يوط
South Africa and countries in South America
commonly use pads with plastic box liners when
exporting to other countries. These pads contain
sodium met bisulfite and allow slow release of SO,
during transit and marketing,
Other fumigation treatments of enclosed areas
include acetic acid and oxidants such as gaseous
ozone, formaldehyde, ethylene oxide, and
propylene oxide. The latter two fumigants have
been used in the past on dried fruit (Whelton et al
1946) and have been recently re-registered for
selected dried food crops such as nuts and spices
(ee table 17.2). Ozone will retard the growth of
fungi on the fruit surface, reduce sporulation on
decayed fruit (thereby reducing inoculum in the
atmosphere), and destroy offensive odors. In
California, a special local need registration for
formaldehyde allows fumigation treatments to kil
spores of Penicillium. on equipment in storage,
during de-greening, and in precoaling facilities in
citrus packinghouses, with a limit of two
applications per year
Alternatives to sulfur dioxide are needed because
of concern with sulfide residues and potential
phytotoxicity. Acetic acid vapors have recently
been used experimentally as a fungi static gas for
the control of postharvest pathogens of apples
and table grapes (Sholberg et al. 1996), as well as
Stitt Cate AED callie اه ی ack
صفحه 49:
جدول ۱۷۱و ۱۷۴ معاقط هستن. بیخی از تارج کش های ذكر شده نيز دارلى يك عمل
گرا حتی ریش كن نی هستند که گاهی اوقت به رون Jl قارع کش
بستكى دارد هرمن با عمل سوكوبكر يا زبين بنده . هرمان هاى يس از عفوتث السث عمل
Gls كه ماده شيمبانى ب مقدار كاف و
ربشه كن كردن عمل فيرقايل يركشت رشد قاچ متقض می
عل ات نيد ملتسا عرد ل مو لي
على درمتى موجود شيميانى يا فيزيكى هستند. cp le ap
PREVENTION, SUPPRESSION, AND
ERADICATION
Preventive (protective) chemical treatments are
predilection treatments that must be applied before the
{uit is infected by the pathogen. These chemicals prevent
the germination of fungal spores or inhibit mycelial growth.
Generally; they are only effective il quiescent infections
are absent, the inaculuru levels of decay organisms are
low, and the fruit do not have excessive mechanical
Injuries or insect damage. Most ofthe fungicides listed in
tables 17.1 and 17.2 are protectants. Some of the
fungicides listed also have a suppressive or even eradicate
(therapeutic) action that sometimes depends on the
‘method of fungicide application. Treatments with
‘suppressive or eradicant action are post infection
treatments; suppressive action inhibits fungi growth as
long as the chemical is present in sufficient amounts, and
‘eradicate action irreversibly stops fungal development. The
{few therapeutic treatments available are either chemical
‘or physical, Therapeutic treatments are most applicable to
onperishable crops such as grain and dried fruits. Acetic
acid propionic acid wash treatments kill organism
‘established in kemels and seeds of grain crops.
صفحه 50:
عملا ا[ يد هاب ا أسترهاى جعبه بلاستيكى استفاد می کت ان نت ها
وى مابيمولفيث سديم مسد و بامث زد شدن آهسته 50 مر حين
ساي همان هاى يغور ذر ماطق محصور شامل لسيد استيك و اكسيدان هي
pl) alate I SES tage gy ير هر كنكتم
قارجهلى موجود در سطح ميوهرا عقب مىاتدازد اسيور
,دهد ادر تتيجه باعث كاهش تلفيح در جو م شود) و يوه
زنده را از بين موبردد در كليفتي ثبت تياز وه محلى براى فرمالئيد به
روشهاى بخور اجازه مىدهد تا لسيورهاى ينسيليوم را از بين بيرئد در
ردن وهر تأسيسا قبل
اس کی رت ی مرا و
یل ip ph لقييفسسلى وليه sight hand enn
a as at كوكرد تيا است. يخارات اسيد لسنيك اخير
تجربى به عتوان كاز قارجى براى كتثرل عوامل بماری زای سیب و نو
155 باالكور سفرى اسيد استيك به طور
كامل جوله زن cinerea tno 8012105 را که روی سل موه
ار میکند. در ال که كنتول يوسيذكي بيه $02
South Africa and countries in South America
commonly use pads with plastic box liners when
exporting to other countries. These pads contain
sodium met bisulfite and allow slow release of SO,
during transit and marketing,
Other fumigation treatments of enclosed areas
include acetic acid and oxidants such as gaseous
ozone, formaldehyde, ethylene oxide, and
propylene oxide. The latter two fumigants have
been used in the past on dried fruit (Whelton et al
1946) and have been recently re-registered for
selected dried food crops such as nuts and spices
(ee table 17.2). Ozone will retard the growth of
fungi on the fruit surface, reduce sporulation on
decayed fruit (thereby reducing inoculum in the
atmosphere), and destroy offensive odors. In
California, a special local need registration for
formaldehyde allows fumigation treatments to kil
spores of Penicillium. on equipment in storage,
during de-greening, and in precoaling facilities in
citrus packinghouses, with a limit of two
applications per year
Alternatives to sulfur dioxide are needed because
of concern with sulfide residues and potential
phytotoxicity. Acetic acid vapors have recently
been used experimentally as a fungi static gas for
the control of postharvest pathogens of apples
and table grapes (Sholberg et al. 1996), as well as
Stun full: te icsts with: tebla guepes: acetic acid
صفحه 51:
درمان هاى بيشكيرقه و سركويكر در اين
فعال مورد استفه براى ابن تيمارها شامل تركبيات معدنى و الى ساده و
همجتين موادي با ساختارهلى الى بيجيده تواسث. قارع كفها مر اسن
ساختار شيميانى أنها در كروههاني دسته بتدى مى شوند زب 06500
1998 مراجمه كنيد). تركييات موجود در هي كلاس داراى عملكردي مشاب
el Ina بتزيديدازول هاو بيرازين ها مهمثرين كلاسهاق
برخ از اين روشهاى درمفى قبل از يرداشت. ماندد ساببروديتيل و
فعاليت خود را حثى يس از هبور ميوه از رید شستنو
an pe laps که سوه هب Aan pg SS go
از براشت محصول در نها محدودشده است , حمل می شود
تيمارهاى قيل از يرداشث براى بر ارت همیت بشتری پد کرد اند
اكرجه آنثى بيوتيك برلى كتترل بيعارى باكتوايى قبل از يرداشت استفاده مى
ماد حالحام بای فده پس از راشت بت نشده ات
] may have more than one
mode of activity, preventive and suppressive
treatments are discussed together in the section.
Active compounds used for these treatments
Include simple inorganic and organic compounds,
5ه well as materials with more complex organic
Structures. Fungicides are grouped into classes
based on their chemical structures (see Uesugi
1998). Compounds within each class have a
similar mode of action that targets either a single
site or multiple sites in the biochemical pathways
of the fungus. For postharvest fungicides, the
carbonates, phenols, dicarboximides, phthalimide,
benzimidazoles, and piperazines are the most
important “older” classes: new developments
include the hydroxyanilids, phenylpyrroles, and
strobilurins. Although most active as post
harvesttrcalnicnts, some of these fungicides and
others are also quite active against postharvest
decays when they are applied before crop harvest.
‘Some of these preharvest treatments. such as
yprodinil and tebuconazole maintain their activity
even after fruits are passed through the
postharvest washing process (Adaskaveg and
Forster 2000). Therefore, preharvest treatments
have become increasingly important for the
export market when fruits are shipped to countries
where postharvest treatments are restricted.
Athough antibiotics for bacterial Uisesse control
صفحه 52:
PREVIOUSLY AND CURRENTLY REGISTERED FUNGICIDES FOR
POSTHARYEEaat e514»
ثبت شده
Inorganic compounds such as ef@mental sulfur, sulfur dioxide,
and potassium sorbate have been used historically with some
انك alld 55 la ope ری شده. لیف گسترده ای از
غعاليث را دارد اين تركيب از رشد جلوكيرى تم كند مكر SEI gle bl JASN
eet cad ee sn a eee
ats Aspergillus ,Rhizopus. Penicillium ie of toy le
رجه فارئهايت) برأى قارج كوهى كن بنسيليوم
‘success for managing postharvest decays. Elemental sulfur
has been used commercially with moderate success to
protect peach fruit from brown rot infections. Because of
potential phytotoxicity, inactivity against Rhizopus rot, and
Improved fungicide treatments, sulfur is rarely currently
used. Potassium sorbate, a common postharvest fungicide for
‘ried frult or processed foods, has a broad spectrum of
activity. The compound does not prevent growth unless high
‘concentrations are used and sufficient chemical is absorbed
‘on the processed fruit to reduce initial colonization by decay
fungi such as Rhizopus, Penicillum, and Aspergillus species.
Some of the fist treatments used to control postharvest
decays of citrus fruits were alkaline solutions of borax,
sodium carbonate, and sodium bicarbonate. The
‘eflectiveness of these treatmenis is due to accumulation of
alkali in potential infection sites on the surface of the citrus
fruit (Eckert and Sommer 1967). In laboratory studies,
recommended concentrations of borax were lethal to conidia,
‘of Peniciliurn species after a 5. minuto exposure at 43.5°C
(220°), but only weakly fungicidal at 38°C (100°F.
صفحه 53:
رجه سانتيكرد 1١3 هرجه
نهايت) براى قارج كوهى كونه يتسيليوم كشتده بود . لاجر 74 شرج
سانتيكراد 1٠-( هرجه فارتهايت) فقط قارج كش ضعيف يود هرمن يا تال
Col استفاده مى شود محلول هلى كرم شده كربنات سديم يا بى
مدیم کمی سمی تن ابن حال لين تيمارها خر طايه ٠
يراى اسيورهى كوه ينيسيليوم سمى تيستند. هنوز هم تشان داد
ش هلى درمقى تحت شرايط تجارى مثر هستنف
Smilanicky ممكران 1350 95م
سولقات سديم.فنيل فاك (5088 تي قعاليث باقيمائدة لى در جلوكيرى
ود يس از هرمان باقيمتده ها در مكانهاى بلقو
وى ميوه جمع مى شوتد واز جد يوسيدكى ناشى از تلفي يعد
عامل يمار at a) te ني
شود 5086 كاملأدر أب معلول است. در 10:3 PH يون فنات قتيل
اف هر يفيل عت
In laboratory studies, recommended
‘concentrations of borax were lethal to conidia of
Penicillium species after a 5-minute exposure at
43.5°C (10°F), but only weakly fungicidal at
38°C (100°F). Treatments with 6 to 8% borax
that are either heated to 43.5°C (10°F) or not
Finsed after treatment are effective for control
Penicillium decays and stem-end rots caused by
Diplodia and Phomopsis species (Eckert and
Sommer 1967). Because visible residues of
borax on fruit are not acceptable, commercial
treatments are always rinsed with water. Borax is
relatively insoluble in water, and this leads to
application problems. Thus, commercial
treatments usually use 4% borax and 2% boric
acid at 43.5°C (10°F). Heated solutions of
sodium carbonate or sodium bicarbonate are
slightly more toxic; however, these treatments
are less toxic to spores of Penicillium species as
compared to borax. Stil, these treatments have
been shown to be effective under commercial
conditions (Smilanick et al. 1997, 1999).
Sodium orthe-phenylphenate (SOPP) also has
residual activity in preventing fruit decay. After
treatment, residues accumulate in potential
infection sites on the fruit and prevent the
development of decay from subsequent
inoculation of pathogens. New wounds, however,
dia nok: prokected:-SOPO i quite sntbie ١ اجا
صفحه 54:
بتزيمينازول ها (يتوريل . تيوقانت متيل yt كارتدازيم) كز هم
ری ارت راى درمان هلى قبل ويعد از برداشث در
st بدن. قرع کش طیف گسترد ای از فلت را رباج ها درد
Monilinia .Botrytis .Penicillium «ie of =
ln Le 9!» L-Glocosporium , Ceratocystis
BS
معن ع مرق هس مايق كيبات محافظتى که
قبلا نبث شده بودن اقلابى يود و به ميزان كمتوى از كاري
بيشترو عمل سوكوب تيار داشتند. هر حال حاضر. فقط تيابندازول هنز بای
کر
ان و تاره شاه روز
وحر وا مساك مو + يسول لزعل عل بأل
Botrytis enerea یت سیر
ع كش دای کر ات ای کل دیپس رت
ود رو
(9101) يمرازين به طور كسترده لى در كنشته
The fungicide is still registered, but itis now rarely
used as a postharvest treatment because it must
be applied as a wettable powder suspension at a
high rate that often leaves unacceptable visible
residues on the fruit.
The benzimidazoles (benory|, thiophanate-methyl,
thiabendazole, carbendazim) were another
important group of compounds used for pre-and
postharvest treatments in the past (Ogawa et al
11968: Wells and Gerdus 1971). The fungicide has
a broad spectrum of activity against fungi.
including Monilinia, Botrytis, Penicilium,
Ceratocystis, and Glocosporium species, with both
protective and suppressive action.
When introduced, the benzimidazoles were
revolutionary compared to the previously
registered protective compounds, requiring lower
application rates and having a greater activity and
a suppressive action. Currently, only
thiabendazole is still registered for postharvest
Use on a variety of crops. The demethylation
inhibiting (DMI) piperazine fungicide trisorine was
widely used on stone fruit in the past for control of
Monilinia spp. and is active against benzimidazole-
resistant populations of the pathogens. It is not
elleclive, however, against other decay fungi such
Botrytis cinerea or Rhizopusstolonifer. Other
fungicides extensively used for postharvest decay
correlate pak are Eile:
صفحه 55:
tees Dichloro (DENA) قد نستو بیرف الا
Rhizopusstolonifer 1 350 مسا گنای
85120005 بسوإثر لستكستتززق ل ليخاكسزى بوسيدكوق هوه لعو
he tn
از أتجا كه مجموعه اى از غوامل بيمارى زا معمولبامث يوسيدكى بيسن
بداشت محصول میشود. سول
0006 عمرا يا دى كلريد در اير يوسيدكن ناشى از نه ا
Rhizopus ; Monilinia . Botrytis Peniciliium ,,
fe pth Sige la Ine ig
از برداشت با 901004 و يتوميل هلو اشاقه
شده نت و هنکاان 41۹8۲ نی > مت بر رون خن
برزيل مورد أزمايش قرار كرفت . Colletotrichum spp tens
از هرمان بدون انول سركوب شد لين نشار
ln a دیگر باون ال به نان ول"
زب کنده تفه شون بان ال
در یات متعد ال یک ماد کنر شده أسث و تمى تواد هر شرمان
على بس إز برقافت از آن فده شود تحمل بای 07000006 بای
تارهای پس از سنگ در بالات متجده در سال ۱9۸۹ فیس
Dichloro (DCNA) is still registered and is most
active against Rhizopusstolonifer, it is ineffective
‘against other Rhizopus species (Ogawa et al
1961; Ogawa et al. 1963b; Weber and Ogawa
11965). Control of gray mold, brown rot, and.
Penicillium decays is unsatisfactory.
Because a complex of pathogens usually causes
postharvest decays, mixtures of fungicides are
commonly used in management strategies. Thus,
mixtures of benomyl. thiophanate-methyl, or
iprodione with dichloride were very effective
against decays caused by species of Monilinia,
Botrytis, Penicillium, and Rhizopus on stone fruit
when applied pre- or postharvest (Ogawa and
English 1991). In an attempt to increase chemical
coverage and penetration into infection sites,
ethanol has experimentally been added to
postharvest treatments with DCNA and benomyl
for peaches (Feliciano et al. 1992). When this
treatment was tested on peaches in Brazil
established infections of Colletotrichum spp. was
suppressed more effectively than by the
treatment without ethanol. This suggests that
other protectant fungicides may be used as
suppressants by the addition of alcohol as wetting
‘agents. In the United States, however, ethanol is
a controlled substance and cannot be used in
postharvest. trestments/;A residue tnlerence for:
صفحه 56:
W FUNGICIDES FOR POSTHARVEST USE
قارچ کشهای جدید برای
ستفاده در پساکشت
Currently, more new fungicides are being developed,
Introduced, and registered for use for fungal disease
‘management than at any other time in the history of
agriculture. These new tools were designed with awareness
and criteria for greater environmental and human safety
than older fungicides. Many of the most recently introduced
fungicides offer the promise of lower application rates,
greater efficacy against target pathogens, minimal effects
against non-target organisms, short persistence or
nonreactivity in the environment, and greater worker and
consumer safety during exposure than older fungicides.
After the cancellation of the postharvest registration of
iprodione, representatives of the new classes of fungicides
were also evaluated for postharvest use. Some of these
compounds are now available for use on selected crops or
will be made available within the next few years. In 1998,
an emergency registration was obtained for postharvest
Use of fludioxonil on stone fruit crops. Fludioxonil belongs to
2 new class of fungicides, the phenylpyrroles. Itis highly
active against all major posthar. vest decays, including
bbrown rot, gray mold. - Rhizopusrol, Penicillium decays and
decays caused by species of Gilbertella and Mucor that
previously could not be controlled with existing fungicides
(Forster and Adaskaveg 1999). Thus, Audioxonil has the
Geet ot hue leak Pate ده و سم یی و ل ل
صفحه 57:
ی
نگرانی در مورد ایمنی درمان های شیمیایی انگیزه اصلی ایجاد روش
های کتترلبیووزدکی با استفاده از موجودات متضادبوده است. اب
یسم SUA eet Di cade ae
قارع هاى رشته اى هستيد. اكرجه آنها به راحتن در أزمانشكاة
شناسايى مى شوند اما انتقال از تضاد مشاهده شده در آزمایشگاهبه
کنقرل موققیت آمیز در مجیط بستهبني آزمایشگاهی تعریف شده و
در نهایت به اجرای موئر در تلد نجاری کشاورزی کار دشواری بوده
اسث. در روند توليد مقادير زبادى از اركانيسم کنترل بیولوزیکی
راش زشيكى اركائيسم اصلى كتشرل بيوكيسيس مى توايد بأعث أز
بین رفتن صقاتی شود که برآی توسحه موققیت آمیز تجازی ضروری
ln pale aan کتترلبیووزیکی ,با قعل و انفعاات carp
میکرویی و وابستگی آنهابهمحیظ خاص. شرایظ رواب هنوز Sear
شرایط ضعیف است (لارکین و همکاران 1898).باران فقط چند
کتترلبیولوژیکی با موققیت در مقباس تجاری معرفی شده اند
جالش هاى کنترل بوسیدگی بولوزیکی پس از برداشت با جالش هاي
کتتل بیماری در ین زمینه متقاوت نت بهعنوان عذال + استعمار
سطح میوه توسط آتاگونیست قبل از بداشت برای مذبریته
موفلیت پونیدگی بس از برداشنت مطلون آمنت. بپران .زعت
خلس که در حين برداشت و دست زدن به بد از برداشت اقاق می
آفند می ala paul lag slg? پوسیده از عقوت محاقطت
شوند. در ننيجه , قبل از برداشت پاوژن, درمان های قبل از برداشت.
با کنترل های زیستی به عنوان یک روش کاربردی برای رساندن عامل
كنترل بيوكنترل به سطح ميوه بيشتهاد شدهء بوشش عامل كنترل.
nein tee ايا نيع دل سمت أو دين بوي
09۵۵۵۵0۵0 OF FOSMLBROGEN OCOGYE OFM 010,06:10460, 0600701:
Concems about the safety of chemical treatments has been the
primary motivation for developing biological control methods
Using antagonistic organisms. These antagonistic organisms
Include bacteria, yeasts, and occasionally filamentous fungi
‘Although they are quite easily identified in the laboratory the
transition from antagonism observed in the laboratory to
successful control in defined experimental packinghouse
‘environments and ultimately to the effective implementation in
‘commercial production agriculture has been dificult. In the
process of praducing large amounts of the biacontral organism,
‘genetic drift of the original biocontrol organism can result in loss
of traits that are essential for successful commercial
‘development. Biological contro! mechanisms, with their complex
‘microbial interactions and dependency on specific environ.
mental conditions, are stil poorly under stood (Larkin etal
1998). Thus, only few biological controls have been successfully
introduced on a commercial scale.
‘The challenges for postharvest biological decay control are
sifferent from those for control of diseases in the field. For
‘example, colonization of the fruit surface by the antagonist
before harvest is desirable for successful postharvest decay
management. Thus, wounds that occur during harvesting and
postharvest handling could be protected from infection by decay
‘organisms. Consequently, preharvest treatments with
biocontrois have been suggested as an application method to
‘falar thie blocankrol-agerk to the fruit avtece tetare thie:
صفحه 58:
مكانيسم هاى توصيف شده براى كنثرل بولوزيك شامل رقات . نت يوثيز
فى انث وى تلوت ما بن مك ها سكن ست مار تيع
فاب . بيشتيك نه لست كك يك ماع فيزيكى از مل علينت از يدك
عامل بيمارى جلوكيرى مى كند وقثى أتاكونيست در مقاديركاقى در زمان و
مكان مناسب وجود داشنه باش . رقبث مى تند يك مكائيسم رل بو
asl نثى بيوتيس محصولات منالوليكى مقند سموم أنتى بيوتيك
eg il مى شوتد ریسم دیگری را مهار از
بين مى بيند. را ابتك مكانيس التخابى كتترل ببولوزيكى باشد .اين
Mechanisms described for biocontrol include
competition, antibiosis, parasitism. and induction
of host resistance. These mechanisms may reduce
the amount of pathogen inoculum, protect the
infection site, limit disease development alter
pathogen infection, or induce resistance in the
host. Competition between microorganisms can be
for either nutrients or space. For space
competition, it has been suggested that a physical
barrier of the infection site prevents the infection
of the pathogen. Competition can be an effective
biocontrol mechanism when the antagonist is
present in sufficient quantities at the proper time
and location. In antibiosis, metabolic products
such as toxins, antibiotics, or enzymes are
secreted by the antagonist that inhibits or kills
‘another organism. To be an elective mechanism of
biological control, these inhibitory metabolic
products must be secreted at the site of
interaction between pathogen and biocontrol
agent. Additionally, the products must be present
in sufficient amounts to be inhibitory. Parasitism
occurs when the antagonist feeds on or grows
within the pathogen, resulting in the direct
destruction or lysis of pathogen structures
Induced resistance of the host plant occurs when
the biocontrol agent induces physiological
changes in the hast that render it less susceptible
to infection of the pathogen. These changes may
صفحه 59:
برداشث دو تيمار كثرل ببولوزيكى هر حال حاضر
اثبث شده اسث (جدول 0177 810-518 يك اماد
عامل les Sil J مولي برد براي ماه سای
انخير 01008003 090903 gles وتات نهل
aye td یی تجری 058105216
متا اس ماد سر ای کی ان وهای ری
عر به و كم از دی سوه ant ور كلى.
كر لهلى بويك قط با تل تاي تسرك فق ری تلا
pa حال سا نب سح کل لل یاس با های
موی را ند ماه
کی مازی توددکن مرح کل وک و ما
مت ادها هد سوم دقع یی پیش دا
aye ae ite al os allt
For postharvest use two biological control
treatments are currently registered (table 17.4),
Bio-Save is a preparation of the antagonistic
bacterium Pseudomonas syringe. Itis used on
citrus, cherries, pome fruits, and potatoes for
control of a range of decay organisms. 8
combination of biological control and calcium
treatments was more effective for control of
postharvest Penicillium decay of apples than
Using the biocontrol agent alone (Janisiewicz et
al. 1998). Aspire is a preparation of the yeast
Candida olcophila and is registered on pome
fruits and citrus. The commercial efficacy of Bio-
Save and Aspire has been inconsistent. Like
other biological controls these treatments never
completely prevented fruit decay. In general
biological controls only provide a partial level of
control with results that are often inconsistent
(El-Gaouth 1997). Currently, they do not provide
levels of control comparable to synthetic,
fungicides (Mari and Guizzardi 1998). In
addition, there is no curative activity, and their
Use is sensitive to pathogen concentration
(Roberts 1994). For commercial applications,
manufacturers of biocontrol treatments, as well
as researchers, have suggested their use in
conjunction with chemical pesticides (Droby et
al. 1998). To date, biocontrols should be
و اه ی و محمد
صفحه 60:
تفا bd ides aes یه ای بای سفاده از ماد
شيميايى مصنوعى (به هنون مثال. قارج كششها براى Fie SAS
وش هلى بيولوزيك
توليدمىشود. Gl) hp منابوليتها أننى بيوتيكهاى طيف كسترفه ل
هت بل و همكاران 144#: جانيسوي و همكاران 1991 اينكه ی لین
مواد يا ساير تركياك مكانيسوهاى كنثيل بيولوزيكى هسنتد مشخص
el امكان بذيرمى كد احثمالً در فلظشهاى بابين وجود دارئد هنوز ايده
eal ca بيلى يفي sean Sell
کیب با تجهب رات مقی هل ازایلستند مدق
The use of biological controls is not necessarily
the ultimate alternative to the use of synthetic
chemicals (ie., sungicides) lor postharvest decay
control of horticultural crops. A debate is,
developing on the use of these biological versus
chemical methods of decay control. in the case
of chemical control, a single active ingredient is,
used that is highly characterized (investigated)
chemically and toxicologically for any adverse
human health and environmental effects. in
biological control, an organism or a natural
product is used that is not well characterized
chemically but is produced through cultivation or
fermentation processes without any selective
concentration or purification of the organism or
its primary or secondary metabolites. Some of
these metabolites are broad-spectrum antibiotics
(Bull et al. 1998; Janisiewicz et al. 1991)
Whether these materials or other compounds are
mechanisms of action of biological controls is not
clear, but known and unknown metabolites are
probably present at low concentrations under
Conditions that allow for their production. Stil
the idea of using a synthetic compound is not
attractive to some people because not all
aspects of the compound can be evaluated in
respect to potential negative effects. Itis not the
intent of the authors to resolve this issue but to
صفحه 61:
کننده های رشد گیاه
يتارين. هر درمقى كه
دم ده ترس اه تأخيرمي قدازة بلكه
oo is
تبمارهلى 09-5 يم شدن دكمدهاى مبوه ليمو راب تأخيرمياتداند بنارا
انها سا laf alent وسيدكى هی هه طلا ب
> دید وم را بای موه بد ازدشت معصول
شده اندو به طور أزمايشى كشترل مشوتد ۲۵
هاتند أمينو اتوكسى وينيل كليسين هيدروكلراد يا ل
تسیل مشاه را دنه اه دهد
به همین تیه دمن با ها رکنندههای
۵۵۲ ۳۸۵ ۵۲۲ ۵۵06۷۵ 666۲/۵6۵۵ 06 ۵606660607
مدیریت پوسیدگی پس از کشت با تنظیم
ROCOLOTORO
Plant growth is requlated by naturally occurring growth
regulators that act as hormones. To change the plant's
physiology, synthetically produced plant growth regulators
arecommonly applied to certain agricultural crops. These
compounds may act antagonistically to the naturally
occurring substances or they are complementary, synthetic
derivatives of these substances. By changing the plant's
physiology, selected plant growth reg. ulators may also
have an indirect effect on the fruit's susceptibility to
postharvest decay caused by opportunistic (weak)
pathogens.
‘Thus, any treatment that delays plant senescence not only
delays ripening but may reduce susceptibility to pathogens
that favor senescent tissues for infection. For example,
postharvest treatment of lemons with gibberellic acid
reduces ethylene production, delays ripening, and
consequently delays the onset of sour rot caused by
Geotrichumcitriaurantii (Coggins et al. 1965). For control of
stem decays of citrus, 2,4-D treatments delay the
senescence of lemon fruit buttons and thus delay the
development of Alternaria stem end rot (De Wolfe et al.
1959). Diplodia and Phomopsis stem end rots of oranges
(Loest et al. 1954) and Penicillium, Altemaria, and
Colletatrichum decays of mandarins (Lodh et al. 1963) have
صفحه 62:
روشهای درمان
poe ی رن مد ul
ب ا ل عفن سل قرب ملد بر
حجم زيل (به ga lena ce Js lp کم حجم ماد
رای Fv fase a CDA Eva
ل 0
رواب يسيار كمووجود هارد و در نتيجهمشكلى در
و را
|
eae 0
ات زره نک رای )وی تاش موی
ره مود شهار دج ول ی ری نآ در یه ی
Pee Lua ae eS,
ی 0 0
ند اي ی انا ره سیر رت مر رده
26/008/۲۵۵ 06 056/1116000261١
[7000۳40
برد درمانهای پس از کشت
TREATMENT METHODS
Methods used to apply postharvest treatments include the less
frequently used dips, Nooders, foamers, brushes, fumigators,
dusters, paper wraps, and box liners, as well as the currently
‘more frequently used drenches, high-volume systems (e.g
liquid or air-nozzle sprayers), and low-volume systems such as
controlled droplet (CDA) applicators. High-volume applications
Use from 417 10 834 Vmetric ton (100 to 200 galton) of frult,
whereas low volume systems use 30 10 114 l/metric ton (8 to
30 galton) of fruit. itis critical that the labeled amount of
fungicide is applied to the specified weight of fruit. Low- and
ultra-low-volume applications are more economical and are
‘more environinentally sound, because there is very litle run
off, resulting in nodisposal problems. Therefore, they are
Increasingly being used.
Treatments are applied either as an aqueous solution or more
commonly in a waxoil emulsion. Based on thelr water-o
Solubility, different waxes function differently Waxes used for
postharvest treatments are derived from paraffinic olls
{(petroleumbased oils), vegetable oils, carnauba waxes, or
shellacs. Waxes are primarily used to prevent water loss of the
‘commodity during storage and transportation. In addition, they
generally enhance fruit appearance. Most waxes, except the
shellacs, allow gas exchange, so that respiration can occur with
‘minimal water loss. Ethylene also will freely pass through
عبد تست ما ار ب نه ساكل ید و سین منت ی
صفحه 63:
میبخشد یا در معلولهای ی
شود اث ابمااليل براى كنثول بوسيدكى روى ليموهابه طور قايل توجهى st SB
۳601060 ۵66۵0۲۵۵
۳۳00+
عوامل موثر بر اثربخشی درمان
‘The efficacy of residual fungicides and biological controls,
in preventing or minimizing postharvest decays depends
‘on several important factors. The most important factors,
Include the activity of the treatment against any one
decay organism, the spectrum of activity against the
complex of postharvest decay organisms for each crop.
and the preinfection (protectant) or postinfection
(suppressant) activity of the treatment. The application
‘method may also determine the efficacy of the treatment:
the most efficacious treatment may perform pooriy if itis,
applied improperly. In addition, undesirable side effects
‘may occur. such as fruit staining or development of
resistant pathogen populations.
Generally, the addition of waxes improves fruit coverage.
‘The solubility of the chemical may be enhanced or
decreased. Some methods of treatment allow for improved
performance of the fungicide. As mentioned above,
Iprodione mixed with wax-oil cmulsions significantly
improved the ellicacy of the fungicide against a broader
spectrum of decay pathogens.The efficacy of imazalil for
decay control on lemons is significantly increased when
سیم a و ی سم و هی ی ae
صفحه 64:
ی
تنظیم سموم دفع آفات
ادر سالهاى اخير در ايلات متحده تفيرات عمده نار
رن نت یار
ی سا کیت مد تا رل ول ده
تک هد ایا ری شده ان هی
ات ميا"
یرت
و كدكان یک رش سل مرک تا
کرد یک سوم abs هنكام كاعش م بابد كه يامث انغاذ روشيهاى كنترل تلفيقى
ياخطر يتلاب اتسن را كاهش دهف سميت بالقوه كمترى براى مها
fog asl cis منايع محيطى را كافش دهدبيا مزان مصرف كمتر و مقاومت يه سموم را
كاهش دهد. بنانميل. همانطور كه بل در اي مل تشان اد کشهای با خطر SAS
ens OB Sa Somaya Be علاو بر سبيرواديتيل و ترك
a eS كه يراق Ja eed از برداشت ثبت شده ند ات کشها رب خر
کلهش به دوع تشیممیکند Sapp آفات مولی و سموم زیستی, دمها با داب سموم
شیمیی با لکد محمر به رد سمیت بان ر خامیت گونههای هذف با ووغطیمی
۵ 010۷۵۵100۷ ۵00 0260106 06 ۵866۵075 6۵60۵۲06۲
جنبههای نظارتی درمانهای شیمیایی و بیولوژیکی
REGULATION OF PESTICIDES
Inecent years there have been major regulatory changes in the
United States for pesticides used on all agricultural crops,
Including postharvest pesticides on fruits and vegetables. in
11996, the federal Food Quality Protection Act (FOPA) amended
the federal Food, Drug, and Cosmetic Act (FFDCA) an. the
federal insecticide, Fungicide, and. Rodenticide Act (FIFRA) to
establish a new safety standard for citing tolerances of
pesticides in raw and processed foods. These new safety
Standards directed the U.S. Environmental Protection Agency
(EPA) to consider information concerning the exposure and
cumulative effects of pesticides and other substances in food
that have a commen made of action not only on the general
population, but especially on infants and children.
Furthermore, FQPA encouraged the development and adoption
of safer crop protection tools for U.S. agriculture with what
began in 1994 as the "reduced-risk pesticide initiative.” A
pesticide is considered to be reduced risk when it broadens the
adoption of integratedpest management practices or reduces
the exposure risk to humans, has a lower potential toxicity to
nonmarket organisms, reduces the contamination of
environmental resources, or promotes lower use rates and lower
pesticide resistance potential. As indicated earlier in this
chapter, reduced risk fungicides include the postharvest
treatments azoxystrobin, fenhexamia, and fludioxoni
addition to cyprodonil and trifloxystrobin, which are registered
صفحه 65:
AA JL a pte توسط اصلاحات كتكر ذر ۳۴82 هویب
ل سمل ومد شعد فد دک ۵
هزین اس در بنامه بت ام مجدد ۸ پس از برسی خطر بر
verse, معقول بر سلامثى انسان يا محيط زيسث
رسب تاه مشود تسديم مالاسيت كين َم
مجدد (880) را اتخاذ م ىكند. بررسى استقادههاى بالقوه اداه دارو
لت اه هم
سل رت و
وتیل ۱9۳۷ موی قل ار
]0۵ سموم خط كاهش ياقته كه
عمده يوسيدكى بسبار قمال اث به اوج خود سيد
‘As mandated in 1988 by congressional
‘amendments to FIFRA, the EPA is also continuing
its efforts in re-registration programs of
Pesticides that were registered prior to Nov. 1,
11984, when standards for government approval
were less stringent. Examples of postharvest
fungicides that were not re-registered are
benomyl, thiophanate-methyl, and trifolin. The
registrants of these products found it too costly
to reregister in the low profit postharvest market.
In the re-registration program, EPA makes a re
registration eligibility decision (RED) after a risk
review for "unreasonable adverse effects to
human health or the environment when used
according to the label. The review defines
potential continued uses and restrictions of a
pesticide upon any reregistration. The
postharvest fungicide iprodione was approved
for reregistration; however, because postharvest
Uses were identified as high risk, the
manufacturer of the compound withdrew all its
postharvest uses in 1996, and its preharvest fruit
Uses in 1999, The lack of brown rat fungicide
simulated extensive research for finding a
replacement for iprodione, which culminated
with the development of fludioxonil, a reduced-
risk pesticide that is highly active against all
major decay fungi
صفحه 66:
ی
توسعه درمانهای جدید
at رال است که در سال ۱۹۶۳ بای تسیل بت کال (خش eg SS
قت ولي مسلرف كران براي آکینن از تن رای شروری یرت ات
كنثرل بيماري غيم شیمابی تحشق میکند.
ou 6084 توسعة
هده سد يل ممرف دكن لمحملا عانق پس از
زيابيمى شوتد ودر عملكرد أنه بيار يمن و سازكار
خف ضورتی كن بغرن عر تیان قرف که مایا دای دید
هر دسترس ياشد يك تياز محلى خاص یا یت افطراری (بخش 1۸ فدرال) کی از بعرکه
آى توليد موا شيميا جديد بای متفه در یک محصولآستد لت احماجات وه معلی
براى سموم دقع افاث يا تحمل موجود وجود دارد. هر حالى كه ثبت نام اضطرارى ميزان تحمل
‘dail pant Srl ell gl py Sub Spe aja pu all
۵6۷6۵۷۵۵۵0۵۲ ۵6 06 60 ,1ض 6920091٠
0۵۵۵0۵
In contrast to preharvest treatments, postharvest treatments
‘generally do not provide a large, high-profit market, and the
agrochemical industry has been reluctant to spend time and funds
‘on registration of new chemicals for minor crops. Interregional
Research Project No. 4 (IR-4) is a federal program that was
initiated in 1963 to facilitate full registration (Section 3) of
pesticides for minor uses to ensure a supply of essential pest
‘management tools for minor crop growers and food processors.
This program develops residue data so that the registrants would
incur minimal expenses toward minor use labels of their products
that are approved by the EPA. In the past, there were relatively
few effective chemicals available for postharvest treatments. This
is because the development of registered chemicals for
postharvest use was aggravated by public position of stressing
tisks over benefits; difficulties in discovering chemicals that
effectively control decay pathogens, emergence of fungicide-
resistant pathogen populations, and research emphasis on
‘nonchemical disease control strategies.
With the enactment of FQPA, development of reduced risk
pesticides for minor crop uses has become much more attractive
for registrants. Furthermore, consumers are much more likely tO
approve postharvest treatments that are rated as reduced risk and
have been shown to be extremely safe and consistent in their
performance. Thus, in the future we can expect a number of new
treatments to become available. A special local need (Section 46
جع جح مایا ان eererpency registration (Section 18-Federal) te
صفحه 67:
سل دادن هب یرف شیپ
عنوان jot تحمل ب۴ به Jp
کرد بش I tas gli
از يرداشت به جز مواردى كه 8 به
0 راي ا ريو MIE aS
یس دا ول اس سل موی
تس مادک pn Se تشد ات در ول 1 ۱۷
کلف شنت کی سر مد هیا سک مار وی تسیل
بای مد بت سوم قات شال ال رات ریس با فا رت در سرت
تب از مین تحمل lang fg ties بای برسی له دهد ستههای اه
محدودیتهای استفاده از سموم دفع آ
O68 1017S OF
PEOMOWES
Residue tolerances must be established forall postharvest
chemical treatments except those that the EPA has
designated as exempt from tolerance or that the FOA has
designated as Generally Regarded as Sale (GRAS). Exempt
chemicals for postharvest use include chlorine solution,
potassium sorbate, potassium bisulfile, and sulfur (U.S.
Environmental Protection Agency 1999). Limits for application
raics, however, also exist for exempt compounds. For
example, there is a25-mgi (ppm) limit for generic
hhypochlorous acid used in spray or dip tanks. Exceptions exist
ifa label is registered for a specific hypochiorite-containing
product for a given crop.
Residue tolerances that have been established for nonexempt
chemicals are included in tables 17.1 and 17.2. & tolerance is
the maximum residue of a chemical that is allowed to remain
fn the product. Pesticide registration includes evaluation of
Combined or aggregate effects of pesticide exposure from
food, drinking water, and other no occupational uses, as well
as the cumulative effects of pesticides that are similar in their
Chemistry. Pesticide manufacturers or registrants must submit,
2 wide array of scientific studies for review before EPA will set
a tolerance. Data packages are designed to identify possible
harmful effects that a pesticide could have on humans
(toxicity data), the amount of chemical or breakdown products
likely to remain in or on food,
صفحه 68:
مقاومت در برابر قارچها
الست كه به طور زنذيكى يه اث م رسد ويه
قارج اجازه م دهد در يربر ماده شيميايى كه قبل رشد أن ر مهار مىكند مقاومت كند. مقاومت
ب رح کش بای تما زمقى أشكار م شود كه بوسيدكى ميوه ياد شود
es Sue خاس بل کل ود رسیهای ابر در مر ماوت به اج کش در
Kendall and Hofiomon (1998)', Hewill (1998) .5 .1<(
اج کشهایی كه خارابيك حالت هملكرد یت واحد هستند تنهار يك محل از سیر
رج تأثييمىكذارنك در ننيجه8. احترام رشد همه مواد يا خطر كاهش يافته در
در مفيل: مواد با مملكرد جند سايت نه تتها يكى يلكه بسيارى أز
اس هر يك فرابند Ee See
رخ دهد كه ممكن لست بقل “رافوايش دهد شخصى از SU
برحل رشد ابيدمىاكثر عوامل بيمارى زاى كباهىهابلويدى است. تقييرات جهشى بلافاصله
یس ون وه ری که باشد. رشد أن در جمميث قارج سريع أسث. هر هيدو
تسد دی"
0000
00000006101065
DEFINITIONS AND CONCEPTS
Fungicide resistance is a genetically inherit character that allows
the fungus to withstand a chemical that previously inhibited its
‘growth. Fungicide resistance for postharvest treatments becomes
evident when fruit decay develops that previously could be
controlled by a specific treatment. Recent reviews on fungicide
resistance are found in Hewill (1998) and Kendall and Hofloman
(1998),
Fungicides that have a single site mode of action affect only a
single step in a physiological pathway of a fungus, resulting in the
.م vention of growth. All of the reduced risk materials belong in
this category: In contra: materials with a multi-site mode of action
disrupt not just one but many processes that are vital for growth,
Ian environmental pressure such as the use of a fungicide to
‘mana a disease is applied to a target pathogen population, the
population may respond. Two the best-described mechanisms for
responses of organisms to environmental pressures are selection
{and mutation. fin a selection process the mode of action of a
fungicide is only singlesite, there is greater potential to select
Individuals from a heterogeneous population that vary in their
sensitivity at this physiological site than when a fungicide acts on
‘multiple sites. In a mutation process, a genetic char may occur at
the site of action of the fungicide that may increase the
survivability of individual, Because the epidemic growth stage of,
‘most plant pathagens is asexual are haploid, mutational changes
dase ی ی یس ی ی ی مت یت iy He he
صفحه 69:
احسلسيك منجر به زبين رفن ارقي
کت مو ود نیت مج ابي asta roe sh
Sicko 7
Be ba hepa wh de lie
تاي 2 صرن 1
رین تج ه تسیل آها بای اج مامت قرع کشها یز در
قارع كش هاى با مقلومت كم متوسط و بل طبه دی شده ند یک سل
كلى با مقاومث به ريه كش إين أسث كه وفتى جمعيث قارجى.
براي يك قارج كشى اريك كلاس خاص را ايجاد كند. جسهيت”
جمعيتهلى مقاوم به بنوميل 10883 Sti pp » Botrytis
ag ya کر
هت لاه بر
‘The result of these processes is a shift in the
pathogen population from one that was originally
Sensitive to one that is resistant to the fungicide.
A resistant fungal population has a reduced
Sensitivity toward a fungicide as compared to the
baseline sensitivity of e original population. This
reduced sensitivity results in the loss of fungicide
efficacy eventually leads to crop loss. The shift in
pathogen population may be temporary
permanent, depending on the fitness of the new
population as compared to the oide (this is
discussed in more detail below under Types of
Resistance").
Resistance is much more common with
fungicides that have a single-site mode o action
‘than with those that have multiple sites or
action. Thus, according to their potential to
develop resistance, fungicides have also been
grouped into low, modera and high resistance
risk fungicides (Hewitt 1998). A general principle
with lungicid resistance is that once a fungal
opulationdevelops resistance to a fungicide of a
specific class, the population will be cross-
resistant to other fungicides within the same
class. For example, benomyl-resistant
opuiations of Botrytis cinerea are cross-
resistant to thiophanate methyl, thiabendazofe,
and carendazim. In addition, a fungus can have
و ون ی ید مس وی لي
صفحه 70:
po جمعيث قوم مشود مار رکش به كور ادو
بت cote thal ales وهای کل بای مزا
وی اس ergs وگو ی مد
در مت کی جهشهای بای مره ی مشود هب ره ری باکر
aeons 0
مرت A pt ارد كد يك تقر يتف تدرجى بيلق
کرت مدید مها نت )وتان سل تس گنوی
ale, رد ان نع شوت بای ارچ کش ۵11108۳ مرد ان
ریت رزیل شدي إن سايم مول لس
۰۲۵ 0 008
Resistance in fungal populations has been described as either
‘qualitative or quantitative (Kendall and Hoflomon 1998), in
ualitative resistance, a single mutation or a small number of
"mutations in major genes results in the sudden shift from a
Sensitive to a resistant population. Populations of pathogens
with qualitative resistance generally remain parasitically fit
land are stable populations in the absence of the fungicide. In
practice, this results in the permanent presence of the
resistant population. Subsequently, the efficacy of the
fungicide is lost indefinitely Examples of this type of
resistance are found with the benzimidazofes for control of,
Penicillium decays of citrus (Eckert 1988) and brown rot decay
fof stone fruits (Ogawa et al. 1988).
In quantitative resistance, numerous mutations result in
‘changes that contribute to a greater or lesser degree toward
the development ofa resistant population that is comprised of
individuals with different degrees of sensitivity In this type of
resistance, there is ne sudden shift but rather a gradual
change or selection for a resistant population with the
Continued use of the fungicide. Because the multiple changes
{generally make the resistant populations less fit as compared
to sensitive populations, the population will revert lo
Sensitivity overtime in the absence of the selection pressure
(the fungicide). This type of resistance is typical for the DMI
fungicide imazalil used on citrus forcontrol of Penicillium
‘aces فا end React TO091,
صفحه 71:
58
د تظر داشئن اين اصول اساسى. درمائهاى بس از برداشت بلي به ون اى سازكار شونذ كه
رشد بالقوه جمعيتهاى مقلم به يك عامل بيمارى زا به حداقل برسد يا از أن اجتناب شود بايد
اسثراتزىهانى تدوين وبه كار كرقته شود كه توسعه مقاومث را در بين جمعيت هدف به تأخير
il J Ji ee leet ol Sagi Saal oy hale ls fay
معمول ly 2S lg Se yp el gn ole) تشخيص زودرس خطوط مقاوم هر
باب قارج کش بای oS su a8 Jel خاههایبسته بندی ol pad که از
قارج كش هاى فيرمرتبط مانن تببنازول» AUB pe OLN oy ile
ادر ميان جمعيتهاى كوتدهاى بنيسيليوم به جندين
Sala soa Js
aly عر لام وج عو وي Seth یی جذید هقرج در
اه شود و تیان استفاه و بهطر مام را كرفتن در معرض مدوم
قارج كش اقلب متجر ب اننخاب سريع جمعيتهاى مقلوم در بار قارع
شوند بيشثر استراييها بر جرخش يا مخلوط بين طبقات مخثلف قارج كش تأكيد هار اكر از
مخلوطهاى قارج كش به هنوان يك استراتزى بواى مديريث مقاومث استفاده مىة
زمان معرقى قارع كش الو يك ساي استطاده شود ابن بخلوط همجتين بايد حر هر يرنه و
رخ مور بای هر قارع كش استفاده شدم هر مخلوط علا بر cach acyl
يايد دارأ ثرو عملكرد مشايهى در يربر جمميشهاى هدف باشتد هر فير اين مورت
ممكن ست اتاب جمميشهاى مقاوم نجام شود
PRECTICES GOD GTROTEG1IES TO PREYCOT 0
806
شیوهها و استراتژیهای جلوگیری از مقاومت
With these basic principles in mind, postharvest treatments
‘must be adapted so that the potential development of
resistant populations of a pathogen is minimized or avoided.
Strategies must be developed and deployed that delay the
development of resistance within target populations. Initially,
baseline sensitivity studies of the pathogen to anew chemical
should be established before the chemical is commonly used,
{and a monitoring program should be started for early
detection of fungicide-resistant lines. For instance, monitoring
In lemon packinghouses, where unrelated fungicides such as
thiabendazofe, 2-aminobutane, imazalil, and biphenyl are
Used, has made it possible to detect resistance within
populations of Penicilium species to several of these
compounds (Ogawa et al. 1983).
To help delay the development of resistant lines, a new
chemical should be gradually introduced into the current
chemical program, and it should not be used exclusively
Continuous exposure of any pathogen to a fungicide often
results in the rapid selection of fungicide-resistant
populations. Fungicides with single-site mode of action should
‘ot be used alone on a continuous basis. Most strategies
emphasize rotations or mixtures between different classes of
fungicides. IF fungicide mixtures are emplayed as a strategy
for resistance management, they must be Used from the
Introduction of the single-site made of action fungicide. The
mixture should also be used in each application and at
صفحه 72:
مدیریت قارج کش
ی
أزتظر تاريشى. اريخشى و هزيتة تين كنتددى عوامل استقاده از قارج كش يودات اب
توجه يه نظارت صحيح. يك فاكثور تعيين كننده مهم ني اي بتقسيل مقاومت جمعيث باتوزن
درا يك محصول ممين بلشد. حفظ عارلى بالاى يك كارج كش ند هيه تفع كر
thay glee مقلومت نان تجدده يك ضور اتاد الوه مظيم يرا
گنه است. ينواين» فستور مهلها و توصيههابى در اخخيار رن را می ید که اطلامات
علاوه بر ان تویدکندگان منعهد بهمدیریت ماوت از طیق نها ین شرکنی مد
كميك اب مامت در برچ کش هستند. کی از مهمترین جنبههای نظارت
Poy ASN gl yale ath oh)
ورد گشندهای ری ای که در حالحاشرثبت شد اند طيف ات نها نحوه عملكرد و
كلاس و ماندكارى أنها يس از استفده هر محيطهاى متفير مورد يار استه
ذر حال حاضر. دسنهرالعمل هلى قارج كش كه خطر مقاومت را كاهش مدهتد. توصيه مىكنفدة
ایک ات فرع
ste
قرع کشهای علکرد یک سایت
* چرخش ی کلاسهایمختلف قارج كثرها
* محدوديث تعداد كل برنامدهاى كارنردى هر کاس قار کش به چا با کت در هر فصل
60006101000
۳۵۵0۵
Historically, efficacy and cost have been determining factors for
fungicide usage, but with proper stewardship in mind a significant
‘determining factor should also be a pathogen population's
resistance potential to a given product. Maintaining a fungicide's,
high efficacy is inthe interest not only ofits users but also ofits
‘manufacturer. Resistance represents potentially huge economic
loss to the manufacturer. Thus, guidelines and recommendations
are made available to users that provide strategic information for
Fesistance management.
In addition, manufacturers are committed to resistance
management through intercompany programs such as the
Fungicide Resistance Action Committee (FRAC). One of the most
Important aspects of fungicide stewardship for a grower or user Is
to be aware not only of the efficacy of a fungicide but of al ofits
properties, including the consequences of its overuse,
Additionally, up-to-date information is needed on the fungicides
‘currently registered, their spectrum of activity, thelr made of
action and class, and their persistence after application under
variable environments.
Currently, fungicide guidelines that reduce the risk of resistance
from developing in a target population recommend:
+ Initiation ofa fungicide disease management program that starts
inthe field with a multi-site mode of action fungicide, continuing
before and after harvest with single-site mode of action
| مب
صفحه 73:
Jr به ديل يوسيدكى led) کازی یک
Gass FoF pea el pegs gt od hea
Joe Sle نیع سل تج
رفث های مهمی در ری پس از
سیدگی ری مت قیقل قرل لد > حلیه ود کنیدشته نت رن
کنند ال قبلمی کند در حال حاشر. ای شیمای با فاد اجک
موثرترين وسيلهبراى كنترل يوسيدكى بس از برداشت محصول لسث. يا لين حال نا
بخشى أزيك سيستم يكيارجه هستند كه شامل روشهاى مديريثى در زميته. روشهاى
تكهدارى و قخيره سارى بس از برداشت محصول . و همجنين درماهاى بهداشتى
محمول و فاد هوامل كتترل ببولوزيكى اه
00000
Prevention of postharvest losses due to decay has been a challenge
since the beginning of agriculture. Currently, the use of modem
technology for selecting resistant cultivars or modifying postharvest
environments has extended storage and shelf life of harvested
commodities. Using reduced temperatures and controlled
atmospheres to slow metabolic processes of the host, eliminating
potential inoculum sources of the pathogen, and improving
equipment or handling procedures to reduce potential risks of
commodity injury have been critical advances in postharvest
technology for maintaining high quality and reducing losses from
decay. Losses of commodities, however, stil occur during
transportation and marketing. The agricultural economy has
changed from a local to a global market, with narrow profit margins
due to high standards of quality and long-distance transportation
and storage costs that make any loss from decay unacceptable to
the industry. Thus, integrated approaches that utlize physical and
chemical methods have been developed.
Chemical management tools have evolved from simple Inorganic
molecules to complex organic compounds. While older compounds
have a protective action and target multiple sites within the
pathogen, the newer materials often have protective and
Suppressive action, and they target a single site within a
biochemical pathway of the pathogen. In adaition, the latest
Introductions of postharvest control treatments have characteristics
that make them more acceptable to the consumer because of their
extremely low toxicity to certain human populations. Currently,
صفحه 74:
له رن ال سای
هدر ماد شا مرح بو ده ای ات ی شود وا كر
ی تاکز سک
مج دای سنج ری هه تیم eo
con a Seed ae معصول < و كيد ااي براي
شيمابى و كغول هاى بالويكى أيه درشثاقى عرد توليد كتدكان
.بسته بتدى هايا جالش هاى جديدى رورو هستد أكثر محصولات جديد هر
مقايسه يا تركييات قديمى سميث طيف كسترفه أ در براير ول بای
قارجى كه ممكن اسث در يك محصول خا ايجاد شود تارند عا
1 ی یرد را ge
Furthermore, with the advent of computer modeling
in the discovery and optimization of fungicides,
designer chemicals wil increasingly be utilized.
‘Thus, if target sites are chemically well-
characterized, new compounds can be designed or
the efficacy of existing compounds can be optimized.
With these new perspectives in fungicide
development, the increased interest of chemical
companies in postharvest treatments, and the
regulatory emphasis on human and environmental
safety, control of postharvest pathogens with
chemicals and biological controls has a bright future.
Growers and packers, however, face new challenges.
Most of the new products do not have as much
broad-spectrum toxicity against the sungal
pathogens that may occur on a specific crop as
Compared to the older compounds. Furthermore, a
higher risk for development of resistance in target
populations generally exists with new fungicides
because most of these compounds have only single-
site modes of action. New approaches, including the
concepts of fungicide stewardship.” will be needed in
developing and maintaining the fungicide
‘component in integrated disease management
programs in production agriculture. Stewardship,
‘must also be regarded as interdisciplinary.
With the discovery of new highly active compounds,
safety regulations should also restrict the use of
specific chemical classes with similar modes of
action to either human medicine or agriculture
purposes of disease control. This would ensure that
صفحه 75:
امور لجس عله 0
سا ا
محصولات داراى برجسب را كه اجازه بازاريالى جهانى محصولات را مى دهد ان
لبت محصولات يخشى از يبهستكى رويكردهاى يكيارجه در ار كالاهلى كشاورزي انث
كه بواى تظارت بر محصولات و استفاد يمن از أنها در توزيع جهانى ya
تراتزى على استفاه يهينه يس لز برفاكت قارج كش ها شام
کش lea la lye in os Jenga a يا زیم
غوامل بيعارى زرا اه دهند 5
معفم عم اجن ورعب فسط يها عطاقت Por سمه جد ماجع مي !! ممع طبن ذا اعدو اسح Ome
he Ocard صو
JE Adaskaveg, H Forster
Foathorvest pathology, 207.37,
Abstract
New developments in postharvest fungicide registrations of
fresh fruit and vegetable crops and use strategies in the
United States are discussed for preventing decay and crop
losses while minimizing the potential of selection of resistant
pathogen populations. Postharvest fungicides used on
agricultural commodities are among the most rigorously
tested and regulated chemicals in the world and their risk
assessment analysis and residue limits are extensively
reviewed by multiple regulatory agencies. Novel products
and pre-mixtures increase the spectrum of fungal decays
managed and the number of crops labeled allowing global
‘marketing of crops. These product registrations are part of a
continuum of integrated approaches of handling agricultural
‘commodities designed for stewardship of products and their
‘safe usage in the worldwide distribution of fresh produce.
Optimized postharvest usage strategies of fungicides include
integration with other fungicides (ie., pre-mixtures) and
‘sanitation treatments to optimize performance while allowing
identification of methods that reduce the selection of
resistant sub-populations of pathogens