برق، الکترونیک و مخابراتعلوم مهندسی

بررسی روش های رديابی ماكزيمم توان در سلول های خورشيدی

صفحه 1:

صفحه 2:
تاد محترم و خير مقدم خدمت اسناد محترم با عرض خي ۳

صفحه 3:
سمینار کارشناسي ارشد مهندسي برق- قدرت بررسی روشهای ردیابی ما کزیمم توان در سلولهای خورشیدی استاد راهنما : دکتر فرزاد رضوی دانشجو: حامد اخگری زمستان ۱۳۸۹

صفحه 4:
تاریخچه انرژي Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 5:
‎a3‏ و ‎ ‎ ‎PV Markt Diemz)nd in 2008 ‎ ‎so Today 3 2050 ‎45 14 Terawatt*year 45 30-60 Terawatt*year 40 0 ‎36 36 ‎30 30 1 ‎25 25 ‎20 201 ‎is 15 | ‎ ‎Hydroelectric ‎ ‎Biomass ll ‎| ‎ ‎0 ‎o 1 fl ‎Coal Ey cos Im ‎ ‎oil ‎Coal ‎Gas ‎Fission ‎Biomass ‎Hydroolectric ‎Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University ‎ ‎

صفحه 6:
Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 7:
Maximum ‏م‎ ٠١ we = Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University چم 7

صفحه 8:
گنه بندی روشهای ۳۳ ‎Neural ۱‏ | ۳ Current Sere ۳ DC- ۳ k capacitor droop ‏ی تیا‎ Load’ Current or load voltage ee dP/dV or dP/dI feedback J ‎ orrelation Control‏ 6د ‎——e‏ ‎ ‎\ ‏یود ‎Capacitance‏ ‎rch 8, 2011 OH.Akhgari ‎ ‎Photovoltaic MPPT Semi ‎

صفحه 9:
| ‏تقطه ماکزیمم توان خروجي‎ bos) Viupp OF Lupp Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 10:
Hill Climbing / P 10/43 Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 11:
تنظیم اتوماتيك پارامترها و کنترل مد کليدزني Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University ALA:

صفحه 12:
۳۳۵ ۲ Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University +

صفحه 13:
مروري بركارهاي انجام : | ميب ‎١‏ “[_الكوريتم 28:0 بامقايسة ننه 1 = | مسج *| ‎titre Sees sill‏ | سج 122۳41 || اضافه‌کردن سیگتال دیترینگ به ولتاژ کنترلي مرجم ‎ee‏ و جلوكيري از افتادن در اكسترمم انسبي در روش 11111 ‎Climbing‏ 33/43 8, 2011°CH.Akhgari

صفحه 14:
۵۲/۵۷ < - 1/7 left of MPP AI/AV =-L/V, at MPP. AI/AV < -I/V. right of MPP. MPP وه مد Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 15:
CEN rere ‏ا‎ آوردن نق نقطه عملکرد به ناحيه‌اي شامل همه ‎cls MPP‏ ممک تحت نف سرایط جوی | رديابي با روش ‎pena 15/43‏ اه ددمد ,8 سا ۱82 ماه میم

صفحه 16:
مروری بر کارهای ات ۱ بردن سیگنال خطا به سمت صفر توسط کنترلر 1 و ردیابی ‎MPP‏ Yu Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University 16/43

صفحه 17:
37/43 Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 18:
۳۳ Photovoltaic MPPT Seminar, March 8, 2011 0H.Akhgari - Tafresh University SE id:

صفحه 19:
‎aT <1 <O78‏ حا بعد ‎ ‏م0151 نم ‎Vv‏ ‎junction ‏وم ود ‎Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 20:
عدم کاهش توان خروجي با اندزه گيري .. Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University 20/43

صفحه 21:
21/43 Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 22:
حدم _ P(n) = P(r 1) ~ V(n)—V(n—1) 22/43 Photovoltaic MPPT Seminar, March 8, 2011 0H.Akhgari - Tafresh University

صفحه 23:
روش شبكه عصبي 5 ک 9 | ‎Input Hidden Output‏ layer layer layer | لابه ورودي_ Outputs GR Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 24:
24/43 Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 25:
4 PV Array af توان خروجي مبدل و آرابه ۳۷ عمل كردن آرايه در ‎MPP‏ Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 26:
سو ی | ۱ سس( 26/43 Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 27:
روش فيدبك کنترلی 0۳/0۷ 0۳/0۲ اعمال آن با فيدبك به مبدل 39 صفر کردن شیبها با استفاده از چند ‎OH.Akhgari - Tafresh University 27‏ 2011 ,8 جع ‎

صفحه 28:
111 | تس من Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University چم ود

صفحه 29:
29/43 Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University

صفحه 30:
‘Sense Parameters Voltage, Curent Voltage Varies Varies “ا ی ‎Voltage, Curent‏ ‎Voltage‏ Wattage, Curr ‎Curent‏ ی ‎Current‏ میس 3 ‎Tradianss,‏ ‎Tempecatae‏ ‎Voltage, Curent‏ ‎Cent‏ ‏۹ ‏ای ی ‎Voltage, Curent‏ ‎ ‎ ‎Complexity ‎Gy ‎Medium ‎Medium ‎Tigh ‎1 ‎Tow ‎High ‎Tow ‎Tow ‎Medium ‎High ‎Medium ‎Medivm ‎11 ‏مالعا ‎Media ‎ ‎Convergence ‎‘Speed ‎Varies ‎Msn ‎Mesum ‎Fast ‎Fast ‎Fast ‎Siow ‎Median ‎Fast ‎Fast ‎3 ‎Fast ‎NA ‎ast ‎Fast ‎NA ‎NA ‎3 ‎ ‎ ‎Yes ‎Ye ‎Ves ‎Yer ‎Ne ‎No ‎ ‎‘Analog or Digit ‎ ‎Bath ‎Digital ‎Both ‎Both ‎Digial ‎Digital ‎۳3 ‎Digital ‎Bath ‎3 ‏ات۳‎ ‎Digital ‎Digital ‎Disiva ‎Beth ‎Both ‎‘Both ‎Digital ‎Digital ‎ ‎ ‎ ‎۳ ‎Meri? ‎Yes ‎No ‎ ‎PY Array, Dependent ‎9 ‎Xo ‎wes ‎7 ‎3 ‎Ne ‎ ‎ ‎MPPT Technique ‎ ‎IncCond ‎Fractional ‎Fracuoaal ‏اوه دی جر‎ ‎‘Neural Network ‎Ree ‎‘Current Sweep ‎DDC Link Captor Broop Contd ‎[toad For F Maximization ‎“Pid or dP id Fowdback Conitoh ‏میتی وم‎ ‎ ‎ ‎Linear Curent Cont! ‘her & Vy» Computation Sitecbased MPT ‎‘000 MPPT ‎31 ‎LRM ‎Slide Contra ‎ ‎30/43 ‎Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎

صفحه 31:
[1] L. Piegari and R. Rizzo, “Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking,” IET Renew. Power Gener., 2010, vol. 4, Iss. 4, pp. 317- 328. [2] Veysel T. Buyukdegirmenci, Ali M. Bazzi, and Philip T. Krein, “A comparative study of an exponential adaptive perturb and observe algorithm and ripple correlation control for real-time optimization,” in IEEE Power Electron. Spec. Conf., 2009, pp. 4244-7463. [3] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, “Predictive & adaptive MPPT perturb and observe method,” IEEE Trans. Power Electron., vol. 43, no. 3 Jul. 2007. [4] M. C. Cavalcanti, K. C. Oliveira, G. M. Azevedo, D. Moreira, F. A. Neves, “Maximum power point tracking techniques for photovoltaic systems,” Pelincec 2005 conf., Warsaw, Poland, 15-20, Oct. 2005. 15] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, Jul. 2005. [6] N. Kasa, T. lida, and L. Chen, “Flyback inverter controlled by sensorless currentMPPTfor photovoltaic power system,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1145-1152, Aug. 2005. [7] N. S. D'Souza, L. A. C. Lopes, and X. Liu, “An intelligent maximum power, paint Photewattais MAS serena lear Pert Don ards! ite Prodins6tstyAnnu. IEEE Power Electron. Spec.

صفحه 32:
[9] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point trackingmethod,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005. [10] T. Tafticht and K. Agbossou, “Development of a MPPT method for photovoltaic systems,” in Canadian Conf. Elect. Comput. Eng., 2004, pp. 1123- 1126. [11] S. Jain andV.Agarwal, "A newalgorithm for rapid tracking of approximate maximum power point in photovoltaic systems,” IEEE Power Electron. Lett., vol. 2, no. 1, pp. 16-19, Mar. 2004. [12] Y. Jung, G. Yu, J. Choi, and J. Choi, “High-frequency DC link inverter for grid- connected photovoltaic system,” in Conf. Record Twenty-Ninth IEEE Photovoltaic Spec. Cont., 2002, pp. 1410-1413. [13] Y.-T. Hsiao and C.-H. Chen, “Maximum power tracking for photovoltaic power system,” in Conf. Record 37th IAS Annu. Meeting Ind. Appl. Conf., 2002, pp. 1035-1040. [14] K. Chomsuwan, P. Prisuwanna, and V. Monyakul, “Photovoltaic gridconnected inverter using two-switch buck-boost converter,” in Conf. Record Twenty-Ninth IEEE Photovoltaic Spec. Conf., 2002, pp. 1527- 1530. [15] M.-L. Chiang, C.-C. Hua, and J.-R. Lin, “Direct power control for distributed PV power system,” in Proc. Power Convers. Conf,, 2002, pp. 311- 315. Phot@bGFiOUAPT Beuinarnkbhch R. Dia) HRividyrdityitedhdwivtrsy of distributed photovoltaic power

صفحه 33:
[17] L. Zhang, A. Al-Amoudi, and Y. Bai, “Real-time maximum power point tracking for grid-connected photovoltaic systems,” in Proc. Eighth Int. Conf. Power Electronics Variable Speed Drives, 2000, pp. 124-129. [18] N. Kasa, T. lida, and H. Iwamoto, “Maximum power point tracking with capacitor identifier for photovoltaic power system,” in Proc. Eighth Int. Conf. Power Electron. Variable Speed Drives, 2000, pp. 130-135. [19] A. Al-Amoudi and L. Zhang, “Optimal control of a grid-connected PV system for maximum power point tracking and unity power factor,” in Proc. Seventh Int. Conf. Power Electron. Variable Speed Drives, 1998, pp. 80-85. [20] M. A. Slonim and L. M. Rahovich, “Maximum power point regulator for 4 kWsolar cell array connected through invertor to the AC grid,” in Proc. 31st Intersociety Energy Conver. Eng. Conf., 1996, pp. 1669-1672. [21] C. Hua and J. R. Lin, “DSP-based controller application in battery storage of photovoltaic system,” in Proc. IEEE IECON 22nd Int. Conf. Ind. Electron., Contr. Instrum., 1996, pp. 1705-1710. [22] K. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” Proc. Inst. Elect. Eng,, vol. 142, no. 1, pp. 59-64, Jan. 1995. [23] W. Xiao and W. G. Dunford, “A modified adaptive hill climbing MPPT method for Photphakaveltaiepawenaystems ,“HimdnecTae&h vena EEE Power Electron. Spec? Con:

صفحه 34:
[25] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electron., vol. 16, no. 21, pp. 46-54, Jan. 2001. [26] 0. Hashimoto, T. Shimizu, and G. Kimura, “A novel high performance utility interactive photovoltaic inverter system,” in Conf. Record 2000 IEEE Ind. Applicat. Cont., 2000, pp. 2255-2260. [27] Y. Kim, H. Jo, and D. Kim, “A new peak power tracker for cost-effective photovoltaic power system,” in Proc. 31st Intersociety Energy Convers. Eng. Conf., 1996, pp. 1673- 1678. [28] W. J. A. Teulings, J. C. Marpinard, A. Capel, and D. O'Sullivan, “A new maximum power point tracking system,” in Proc. 24th Annu. IEEE Power Electron. Spec. Cont., 1993, pp. 833-838. [29] Qiang Mei, Mingwei Shan, Liying Liu, and Josep M. Guerrero, “A novel improved variable step-size incremental resistance (inr) mppt method for pv systems,” IEEE 2010. [30] Bae, H.S., Lee, S.J., Choi, K.S., Cho, B.H., Jang, S.S., “Current control design for a grid connected photovoltaic/fuel cell dc-ac inverter” APEC 2009, 24th Annu. IEEE Power Electron. Spec. Conf., 2009 , pp. 1945 - 1950. [31] Fangrui Liu, Shanxu Duan, Fei Liu, Bangyin Liu, and Yong Kang, “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Travs. Ind. Electron., vol. 55, no, 7, Jul. Photovoltaic MPPT Seminar, March 8, 2011 0H.Akhgari - Tafresh University 8

صفحه 35:
[33] Chee Wei Tan, Green, T.C., Hernandez-Aramburo, C.A., “An improved maximum power point tracking algorithm with current-mode control for photovoltaic applications” PEDS 2005, IEEE International Conf., on Vol. 1, Iss., pp. 489 - 494. [34] H. Koizumi and K. Kurokawa, “A novel maximum power point tracking method for PV module integrated converter,” in Proc. 36th Annu. IEEE Power Electron. Spec. Conf, 2005, pp. 2081-2086. [35] W. Wu, N. Pongratananukul, W. Qiu, K. Rustom, T. Kasparis, and I. Batarseh, “DSP- based multiple peak power tracking for expandable power system,” in Eighteenth Annu. IEEE Appl. Power Electron. Conf., 2003, pp. 525-530. [36] K.Kobayashi, I. Takano, andY. Sawada, “A study on a two stagemaximum power point tracking control of a photovoltaic system under partially shaded insolation conditions,” in IEEE Power Eng. Soc. Gen.Meet., 2003, pp. 2612-2617. 137] G. J. Yu, Y. S. Jung, J. Y. Choi, I. Choy, J. H. Song, and G. S. Kim, “A novel two-mode MPPT control algorithm based on comparative study of existing algorithms,” in Conf. Record Twenty-Ninth IEEE Photovoltaic Spec. Conf., 2002, pp. 1531-1534. [38] Y.-C. Kuo, T.-J. Liang, and J.-F. Chen, “Novel maximum-power-pointtracking controller for photovoltaic energy conversion system,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 594-601, Jun. 2001. [39] T.-Y. Kim, H.-G. Ahn, S. K. Park, and Y.-K. Lee, “A novel maximum power point tPhethivsitpiconerobfow phot eoltaic pewearisyeterh “mdeitrapidly changing solar radiation,”

صفحه 36:
[40] K. Irisawa, T. Saito, I. Takano, and Y. Sawada, “Maximum power point tracking control of photovoltaic generation system under non-uniform insolation by means of monitoring cells,” in Conf. Record Twenty-Eighth IEEE Photovoltaic Spec. Conf., 2000, pp. 1707-1710. [41] A. Brambilla, M. Gambarara, A. Garutti, and F. Ronchi, “New approach to photovoltaic arrays maximum power point tracking,” in Proc. 30th Annu. IEEE Power Electron. Spec. Conf., 1999, pp. 632-637. [42] K. H. Hussein and I. Mota, “Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric conditions,” in IEE Proc. Generation Transmiss. Distrib., 1995, pp. 59-64. [43] J. Harada and G. Zhao, “Controlled power-interface between solar cells and ac sources,” in IEEE Telecommun. Power Conf., 1989, pp. 22.1/1-22.1/7. [44] E. N. Costogue and S. Lindena, “Comparison of candidate solar array maximum power utilization approaches,” in Intersociety Energy Conversion Eng. Conf., 1976, pp. 1449-1456. [45] Trishan Esram, Jonathan W. Kimball, Philip T. Krein, Patrick L. Chapman, and Pallab Midya, “Dynamic Maximum Power Point Tracking of Photovoltaic Arrays Using Ripple Correlation Control,” IEEE Trans. Power Electron., vol. 21, no. 5, Sep. 2006. [46] L. Stamenic, M. Greig, E. Smiley, and R. Stojanovic, “Maximum power point tracking Phofewihai kbarg dntegratexdspinatovoliniaiventibationsyytems,” in Proc. IEEE Photo?ditaic

صفحه 37:
[47] P. Midya, P. T. Krein, R. J. Turnbull, R. Reppa, and J. Kimball, “Dynamic maximum power point tracker for photovoltaic applications,” in Proc. 27th Annu. IEEE Power Electron. Spec. Conf., 1996, pp. 1710-1716. [48] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system,” in Proc. 2000 IEEE Int. Symp. Ind. Electron., 2000, pp. 157- 162. [49] B. Bekker and H. J. Beukes, “Finding an optimal PV panel maximum power point tracking method,” in Proc. 7th AFRICON Conf. Africa, 2004, pp. 1125-1129. [50] K. Kobayashi, H. Matsuo, and Y. Sekine, “A novel optimum operating point tracker of the solar cell power supply system,” in Proc. 35th Annu. IEEE Power Electron. Spec. Cont., 2004, pp. 2147-2151. [51] H.-J. Noh, D.-Y. Lee, and D.-S. Hyun, “An improved MPPT converter with current compensation method for small scaled PV-applications,” in Proc. 28th Annu. Conf. Ind. Electron. Soc., 2002, pp. 1113-1118. [52] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking,” IEEE Trans. Energy Convers., vol. 17, no. 4, pp. 514-522, Dec. 2002. [53] D. J. Patterson, “Electrical system design for a solar powered vehicle,” in Proc. 21st Annu. IEEE Power Electron. Spec. Conf., 1990, pp. 618-622. Photovoltaic MPPT Seminar, March 8, 2011 OH.Akhgari - Tafresh University 3/7

صفحه 38:
[55] N. Mutoh, T. Matuo, K. Okada, and M. Sakai, “Prediction-data-based maximum- power-point-tracking method for photovoltaic power generation systems,” in Proc. 33rd Annu. IEEE Power Electron. Spec. Conf., 2002, pp. 1489-1494. [56] Syafaruddin, E. Karatepe, and T. Hiyama, “Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions,” IET Renew. Power Gener., 2009, Vol. 3, Iss. 2, pp. 239-253. 157] C. Larbes, S.M. Atit Cheikh, T. Obeidi, and A. Zerguerras, “Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system,” Renewable Energy 34 (2009) 2093-2100. [58] N. Ammasai Gounden, Sabitha Ann Peter, Himaja Nallandula, and S. Krithiga, “Fuzzy logic controller with MPPT using line-commutated inverter for three-phase grid- connected photovoltaic systems,” Renewable Energy 34 (2009) 909-915. [59] LH. Altas, and A.M. Sharaf, “A novel maximum power fuzzy logic controller for photovoltaic solar energy systems,” Renewable Energy 33 (2008) 388-399. [60] N. Khaehintung, K. Pramotung, B. Tuvirat, and P. Sirisuk, “RISCmicrocontroller built-in fuzzy logic controller of maximum power point tracking for solar-powered light- flasher applications,” in Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc., 2004, pp. 2673- 2678. 161] M. Veerachary, T. Senjyu, and K, Uezato, “Neural-network-based maximum-power- poimt domek ime pfecaup hesteined mohon intextpavedsboosieanverter- supplied PV systeniUsing

صفحه 39:
[62] M. Veerachary, T. Senjyu, and K. Uezato, “Feedforward Maximum Power Point Tracking of PV Systems Using Fuzzy Controller,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3 Jul. 2002. 163] B. M.Wilamowski and X. Li, “Fuzzy system basedmaximum power point tracking for PV system,” in Proc. 28th Annu. Conf. IEEE Ind. Electron. Soc., 2002, pp. 3280-3284. [64] N. Patcharaprakiti and S. Premrudeepreechacharn, “Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system,” in IEEE Power Eng. Soc. Winter Meet., 2002, pp. 372- 377. [65] A. M. A. Mahmoud, H. M. Mashaly, S. A. Kandil, H. El Khashab, and M. N. F. Nashed, “Fuzzy logic implementation for photovoltaic maximum power tracking,” in Proc. 9th IEEE Int. Workshop Robot Human Interactive Commun., 2000, pp. 155-160. [66] M. G. Simoes, N. N. Franceschetti, and M. Friedhofer, “A fuzzy logic based photovoltaic peak power tracking control,” in Proc. IEEE Int. Symp. Ind. Electron., 1998, pp. 300-305. 167] G.-J. Yu, M.-W. Jung, J. Song, I.-S. Cha, and J.-H. Hwang, “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller,” in Proc. IEEE Photovoltaic Spec. Conf., 1996, pp. 1429-1432. [68] T. Senjyu and K. Uezato, “Maximum power point tracker using fuzzy control for photovoltaic arrays,” in Proc. IEEE Int. Conf. Ind. Technol., 1994, pp. 143-147. 2012 ash unives 39/43

صفحه 40:
[70] R. M. Hilloowala and A. M. Sharaf, “A rule-based fuzzy logic controller for a PWM inverter in photo-voltaic energy conversion scheme,” in Proc. IEEE Ind. Appl. Soc. Annu. Meet., 1992, pp. 762-769. 171] Chokri Ben Salah, and Mohamed Ouali, “Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems,” Electric Power Systems Research 81 (2011) 43-50. [72] L. Zhang, Y. Bai, and A, Al-Amoudi, “GA-RBF neural network based maximum power point tracking for grid-connected photovoltaic systems,” in Proc. Int.Conf. Power Electron. Machines and Drives, 2002, pp. 18-23. 173] X. Sun, W. Wu, X. Li, and Q. Zhao, “A research on photovoltaic energy controlling system with maximum power point tracking,” in Proc. Power Convers. Conf., 2002, pp. 822-826. 174] A. Hussein,K.Hirasawa, J. Hu, and J. Murata, “The dynamic performance of photovoltaic supplied de motor fed from DC-DC converter and controlled by neural networks,” in Proc. Int. Joint Conf. Neural Netw., 2002, pp. 607-612. 175] K. Ro and S. Rahman, “Two-loop controller for maximizing performance of a grid- connected photovoltaic-fuel cell hybrid power plant,” IEEE Trans, Energy Convers., vol. 13, no. 3, pp. 276-281, Sep. 1998. 176] T. Hiyama, S. Kouzuma, and T. Imakubo, “Identification of optimal operating point ‏که رم‎ BRamvertalnsnusing ae arch netwonkfonwedl himemaximum power tracking cdiitfl,”

صفحه 41:
[78] T. Kitano, M. Matsui, and D.-h. Xu, “Power sensor-less MPPT control scheme utilizing power balance at DC link-system design to ensure stability and response,” in Proc. 27th Annu. Conf. IEEE Ind. Electron. Soc., 2001, pp. 1309-1314. 179] M. Matsui, T. Kitano, D.-h. Xu, and Z.-q. Yang, “A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC link,” in Conf. Record 1999 IEEE Ind. Appl. Conf., 1999, pp. 804-809. [80] D. Shmilovitz, “On the control of photovoltaic maximum power point tracker via output parameters,” in IEEE Proc. Elect. Power Appl., 2005, pp. 239-248. [81] J. Arias, ۳۰ F. Linera, J. Martin-Ramos, A. M. Pernia, and J. Cambronero, “A modular PV regulator based on microcontroller with maximum power point tracking,” in Proc. IEEE Ind. Appl. Conf., 2004, pp. 1178-1184. [82] A. S. Kislovski and R. Redl, “Maximum-power-tracking using positive feedback,” in Proc. 25th Annu. IEEE Power Electron. Spec. Conf., 1994, pp. 1063-1068. [83] C. R. Sullivan and M. J. Powers, “Ahigh-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle,” in Proc. 24th Annu. IEEE Power Electron. Spec. Conf., 1993, pp. 574-580. [84] H. J. Beukes and J. H. R. Enslin, “Analysis of a new compound converter as MPPT, battery regulator and bus regulator for satellite power systems,” in Proc. 24th Annu. IEEE Power Electron. Spec. Conf., 1993, pp. 846-852. Photovoltaic MPPT Seminar, March 8, 2011 0H.Akhgari - Tafresh University 2/7

صفحه 42:
[86] C.-L. Hou, J. Wu, M. Zhang, J.-M. Yang, and J.-P. Li, “Application of adaptive algorithm of solar cell battery charger,” in Proc. IEEE Int. Conf. Elect. Utility Deregulation Restruct. Power Technol., 2004, pp. 810-813. [87] J. A. M. Bleijs and A. Gow, “Fast maximum power point control of current-fed DC-DC converter for photovoltaic arrays,” Electron. Lett., vol. 37, pp. 5-6, Jan. 2001. [88] S. J. Chiang, K. T. Chang, and C. Y. Yen, “Residential photovoltaic energy storage system,” IEEE Trans. Ind. Electron., vol. 45, no. 3, pp. 385-394, Jun. 1998. [89] H. Sugimoto and H. Dong, “A new scheme for maximum photovoltaic power tracking control,” in Proc. Power Convers. Conf., 1997, pp. 691- 696. [90] R. Bhide and S. R. Bhat, “Modular power conditioning unit for photovoltaic applications,” in Proc. 23rd Annu. IEEE Power Electron. Spec. Conf., 1992, pp. 708-713. Photovoltaic MPPT Seminar, March 8, 2011 5H.Akhgari - Tafresh University 3222

صفحه 43:

Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University 1 /43 با عرض خير مقدم خدمت استاد محترم و حضار گرامي Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University 2 /43 سمينار كارشناسي ارشد مهندسي برق -قدرت زمستان 1389 مقدمه تاريخچه انرژي مفاهيم اوليه فتوولتائيك دسته بندي و بررسي روشهاي MPPT نتيجه گيري 4 /43 مهم ترين عناوين بررسي شده ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University مقدمه كاربردهاي انرژي خورشيدي افزايش تقاضا براي انرژي توليد توان الكتريكي سوختن‌هاي ساختمان ماشي در استفاده افزايش قيمت خورشيدي باتري شارژرها آبمحيط آلودگي توجه به پمپهاي زيست منبع انرژي تجديد پذير مهم در آينده سيستم‌هاي توليد توان در ماهواره‌ها منابع انرژي تجديد پذير 5 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University مقدمه بازده تبديل انرژي خورشيدي به سيستم مؤثر بر عوامل بخشكار نقطه سيستم اصلي الكتريكي ‏PV ‏PV بازده ماژول PV شرايط آب و هوايي 6 /43 رابطه غير خطي ميزان تابش خورشيد دما ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University مقدمه مشكل اصلي ماژول ‏PV بازده پايين در اثر جريان بار تغييرات غيرخطي ولتاژ و جريان خروجي لزوم ‏Maximum Power Point ‏PV ماكزيمم توان سلول رديابي نقطه ‏Tracking )(MPPT ‏Online 7 /43 ميزان تابش و دما ‏Offline ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University MPPT دسته بندي روشهاي Hill Neural Climbing Network& Observe Perturb Current (P&O) Sweep Incremental DC-Link capacitor droop Conductance (INC) control Fractional open Load current or circuit load voltage voltage maximization Fractional shortfeedback circuit dP/dV or dP/dI current controlCorrelation Control Ripple Pilot (RCC) Cell Logic Fuzzy Parasitic Control Capacitance Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University 8 /43 روشهاي MPPT تفاوت روشهاي MPPT هزينه و پيچيدگي سنسورهاي مورد نياز سرعت همگرايي مشكل مطرح شده توسط روشهاي MPPT رنج اثر بخشي بدست آوردن Vmppو Imppآرايه PV رديابي نقطه ماكزيمم توان خروجي اجراي سخت افزاري 9 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش Hill Climbing / P&O اساسHill روش روشP&O ‏Climbing [-]23 []28 آشفتگي جريان آشفتگي ولتاژ ايجاد آشفتگي در سيكل كاري مبدل [-]1 روش & Perturb افزايش توان كاهش توان []22 ‏Observe ايجاد آشفتگي در ولتاژ عملكرد آرايه PV نگهداشتن آشفتگي بعدي در همان معكوس كردن آشفتگي بعدي مسير رسيدن به نقطه ‏MPP 10 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University مروري بركارهاي انجام شده مرجع []11 مرجع []7 مرجع []23 استفاده از الگوريتم دو مرحله‌اي مرحله اول :رديابي سريعتر مرحله دوم :پااليش رديابي استفاده از كنترل فازي براي بهينه كردن آشفتگي‌هاي بعدي ارائه روش اصالح شده Hill ‏Climbing تنظيم اتوماتيك پارامترها و كنترل مد كليدزني 11 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش P&O مزايا هزينه پايين و اجراي آسان الگوريتم كنترلي نسبتًا ساده رديابي مناسب نقطه ‏MPP معايب عدم رديابي نقطه MPPتحت تغييرات سريع دما و تابش خورشيد 12 /43 تلفات انرژي ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University مروري بركارهاي انجام شده براي اطمينان از رديابي MPPتحت تغييرات ناگهاني تابش مرجع الگوريتم P&Oبا مقايسه سه []13 نقطه مرجع افزايش و بهينه كردن نرخ نمونه [ ]7و[]8 برداري مرجع []6 عدم نياز به سنسور تخمين جريان آرايه از ولتاژ جريان آن مرجع [ ]4و[]22 اضافه‌كردن سيگنال ديترينگ به ولتاژ كنترلي مرجع آرايه جلوگيري از افتادن در اكسترمم نسبي در روش Hill ‏Climbing 13 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش كنداكتانس افزايشي()INC اساس روش [-]26 منحني توان در نقطه شيب بودن صفر []36 ‏MPP انجام مقايسه كنداكتانس لحظه‌اي( )I/Vبا كنداكتانس افزايشي( )I/V رديابي نقطه ‏MPP 14 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University شده بركارهاي انجام مروري )INC افزايشي( كنداكتانس روش برابري ولتاژ مرجع آرايه )PV (Vref در نقطه نزديكبا mpp كردنVنقطه عملكرد ‏MPP به MPP مرجع [ ]36و استفاده از الگوريتم دو []40 رديابينقطه ثابت نگهداشتن عملكرد آرايه در آن دقيق MPPبا مرحله‌اي روش INC در تغيير رديابي تغيير تغيير تغيير شرايط جوي مرجع ‏MPP تابع مشخصه I-Vبه دو ‏MPPناحيه توسطVref تقسيم I []34 جديد خطي آوردن نقطه عملكرد به ناحيه‌اي شامل همه MPPهاي ممكن تحت تغيير شرايط جوي 15 /43 رديابي با روش ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University مروري بركارهاي انجام شده مرجع [ ]43و []44 استفاده از كنداكتانس لحظه‌اي و افزايشي جهت ايجاد سيگنال خطا e بردن سيگنال خطا به سمت صفر توسط كنترلر PIو رديابي ‏MPP مرجع []29 مرجع [ ]30و []33 16 /43 استفاده از مقاومت افزايشي با اندازه پله متغير افزايش سرعت و دقت پاسخ حالت ماندگار كنترل بر اساس مد جريان روش INRبا اندازه پله متغير رسيدن به سرعت پاسخ باال ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش ظرفيت خازني پارازيتي معايب روش اساس [22 ] خازنيدر يك ظرفيتخازني كردنظرفيت اضافهبودن كوچك آرايهدر محاسبات الگوريتم پارازيتي ‏INC آرايهموازي صورت چندين ماژول اتصال بزرگ با آرايه‌هاي استفاده آشفتگيبه در براي ايجاد كليدزني ناشي از برايريپل استفاده از خازني مبدل DC-DC ظرفيتورودي بودن خازن بزرگ محاسبه پارازيتي خازنيآرايه با استفاده از فيلترهاي ظرفيت توان ريپل ولتاژ و متوسط اثر كلي محاسبه بردن از بين پارازيتي افزاينده محاسبه كنداكتانس آرايه جهت رديابي ‏MPP 17 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش كنترل وابسته به ريپل()RCC اساس روش مزايا [-]45 []47 رديابي كنترلبراي ذاتي باسيستم ريپل استفاده از سيكل نسبت ‏MPP پيوسته رديابي ‏MPP كاري ايجاد ريپل ايجاد ريپل ولتاژ و كليدزني مبدلمشخصات PVاز داشتن عملنياز به عدم vتوان جريان ‏ ‏p توان قبل ‏i كليدزنيجريان مشتق زماني زمانزماني توان مشتق مرتبط ولتاژ مدار مبدل وو بهره همگرايي به بافركانس كردنشدن محدود مرجع []46 ‏RCC ‏ 90 پايين با شيفت دهنده فاز فركانس سيگنال استفاده رسيدن به ديترينگبراي شيب توان صفرازكردن ‏MPP محاسبه تقريبي ايجاد آشفتگي توان مشتق‌ها استفاده از فيلتر باالگذر با فركانس قطع باالتر از فركانس ريپل عملكرد مشابه RCC 18 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University جزئي مدار باز ولتاژ روش پايلوت سلول روش اساس روش اساس روش [-]48 []53 تابش و تغييرات آرايهباتحت سلول و Voc يكVmpp ‏MPPبين نقطه خطي تعيين رابطه وجود سلول موجود در مشابه به رفتاري خورشيدي دما آرايه نياز به خاموش شدن لحظه‌اي مبدل براي اندازه‌گيري متناوب معايب ‏Voc توان معايب نياز به يك سلول مجزا براي اندازه رفع ‌گيري استفاده از روش سلول پايلوت تلفات توان زودگذر در نظر گرفتن رفتار آرايه يكپارچه براي همه آرايه‌ها مرجع استفاده از ولتاژ ديود پيوندگاه و كنترل حلقه بسته []48 مبدل 19 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش جريان اتصال كوتاه جزئي اساس روش [ ]54و []55 وجود رابطه خطي بين Imppو Iscآرايه تحت تغييرات تابش و دما معايب اضافه شدن يك كليد به مبدل توان افزايش تعداد اجزا و هزينه استفاده از سنسور جريان مرجع استفاده از كليد مبدل Boostبراي قطع آرايه PV []54 20 /43 عدم كاهش توان خروجي با اندازه‌گيري Isc ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش كنترل منطق فازي قابليت سيستم ‌هايمنطق كنترلرهاي امتياز فازي فازي ‏online رديابي تواندقيق و غير ماكزيممغير ورودي‌هاي كاركردن با خطي تغييرات تابش مقابل رياضي بودنبهدرمدل مقاوم نياز عدم دقيق ودما برايدراندازه‌گيري شدت تابش و خارجي سنسورهاي عدم نياز نوسان كمترين همگراييبه سريع و دما ‏MPP فازي سازي [-]56 []70 مراحل كنترل منطق فازي 21 /43 تعيين قوانين براساس جدول مراجعه غير فازي سازي ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش كنترل منطق فازي متغيرهاي زبان ورودي به فازيمتغيرهاي عددي تبديل سازي كنترلر منطق فازيورودي تغيير خطا خطا Eو ‏MPPT شناختي E خروجي كنترلر منطق فازي ‏MPPT غير فازي سازي 22 /43 تغيير سيكل كاري مبدل توان ‏D تبديل متغيرهاي زبان شناختي به متغيرهاي عددي در تابع عضويت ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش شبكه عصبي شبكه عصبي سه اليه دارد: اليه ورودي اليه پنهان متغيرهاي ورودي [-]71 []76 اليه خروجي پارامترهاي آرايه Voc :و Isc اطالعات جوي :تابش و دما يك يا چند سيگنال مرجع خروجي (سيگنال سيكل كاري استفاده شده در اليه پنهان(تعيين مناسب الگوريتم مبدل) عملكرد مناسب جهت تحريك ) ij روش چگونگي تحليل شبكه عصبي 23 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش جريان جاروب اساس روش [77 ] استفاده از شكل موج جاروب براي جريان آرايه PV به روز شدن منحني در يك فاصله زماني ثابت محاسبه Vmppاز منحني مشخصه در همان فاصله زماني در MPP داريم: مرجع []77 24 /43 مفيد بودن اين روش در صورت پايين بودن توان مصرفي واحد رديابي از توان ورودي به سيستم PV ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش كنترل خازن لينك DC در صورت ثابت بودن Vlink افزايش جريان اينورتر [ ]78و[79 ] افزايش توان خروجي مبدل و آرايه PV با افزايش توان مبدل از توان آرايه ماكزيمم شدن Ipeak كاهش Vlink اينورتر مزايا عمل كردن آرايه در ‏MPP عدم نياز به محاسبه توان آرايه سادگي طرح كنترلي پياده سازي با مدارهاي آنالوگ 25 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش بيشينه سازي ولتاژ يا جريان بار انواع بار مراجع [ ]82و[]84 منبع]85 و[ [-]80 استفاده از []85 فيدبك مثبت براي كنترل مبدل مقاومت منبع توان ولتاژي جريانيتوان يماكزيمم شدن جريان رسيدن به ماكزيمم بار خروجي جريان شدن بار منبع آرايه PVنزديك MPP كردن بيشينهعمل بار ولتاژي بيشينه شدن ولتاژ بار بار منبع جرياني بيشينه شدن جريان يا ولتاژ بار بار غيرخطي در صورت منفي نبودن امپدانس مزيت 26 /43 نياز به تنها يك سنسور ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University روش فيدبك كنترلي dP/dVيا dP/dI اساس روش [-]86 []90 محاسبه شيب منحني توان آرايه dP/dVيا ‏dP/dI اعمال آن با فيدبك به مبدل توان صفر كردن شيبها با استفاده از چند كنترل رسيدن به نقطه ‏MPP 27 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University نتيجه‌گيري جنبه‌هاي اصلي در انتخاب روشهاي ‏MPPT سادگي در پياده سازي پياده سازي آنالوگ پياده سازي ديجيتال روش V/ocو Iscجزئي روش ‏Hill Climbing ‏P&O روش كنترل وابسته به وابسته به روش كنترل افزايشي كنداكتانس روش ريپل منطقولتاژ يا جريان كنترلسازي روشبيشينه روش فازي بار روش شبكه عصبي روش فيدبك كنترلي dP/dVيا ‏dP/dI 28 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University نتيجه‌گيري هزينه سنسورها تعداد اندازه‌گيري راحتر ولتاژ نسبت به جريان سنسورهاي حجيم بودن گران و تكنيكهاي آنالوگ يا استفاده از جريان ديجيتال اولويتتكنيكهاي ديجيتال به نرم‌افزار و برنامه نياز نويسي استفاده از روشهايي كه تنها يك سنسور نياز دارند ارزان تر بودن تكنيكهاي آنالوگ از ديجيتال تخمين زدن جريان از ولتاژ تعداد سنسورهاي مورد نياز 29 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University نتيجه‌گيري چندين نقطه ماكزيمم نوعوجود كاربرد محلي اطمينان قابليت و عملكرد اهميت رخ دادن چند نقطه ماكزيمم محلي شرايط سايه جزئي نسبت به هزينه و پيچيدگي ماهواره‌هاي فضايي رديابي ماكزيمم محلي به جاي MPP تلفات توان واقعي رديابي پيوسته MPPدر مينيمم ‌ ‏MPP روشهاي جريان جاروب و فضاي حالت زمان رديابي درستو INC روشهاي Hill Climbing / P&O پيشنها مرحله ابتدايي نياز به اضافه كردن يك وRCC سايرد روشها باال در رسيدن به همگرايي سرعت ماشين‌هاي براي باي‌پسنياز به ناخواسته محلي ماكزيمم ‏MPP خورشيدي روشهاي منطق فازي و شبكه عصبي و پيشنها ‏RCC د 30 /43 ‏Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University مراجع [1] L. Piegari and R. Rizzo, “Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking,” IET Renew. Power Gener., 2010, vol. 4, Iss. 4, pp. 317– 328. [2] Veysel T. Buyukdegirmenci, Ali M. Bazzi, and Philip T. Krein, “A comparative study of an exponential adaptive perturb and observe algorithm and ripple correlation control for real-time optimization,” in IEEE Power Electron. Spec. Conf., 2009, pp. 4244-7463. [3] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, “Predictive & adaptive MPPT perturb and observe method,” IEEE Trans. Power Electron., vol. 43, no. 3 Jul. 2007. [4] M. C. Cavalcanti, K. C. Oliveira, G. M. Azevedo, D. Moreira, F. A. Neves, “Maximum power point tracking techniques for photovoltaic systems,” Pelincec 2005 conf., Warsaw, Poland, 15-20, Oct. 2005. [5] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, Jul. 2005. [6] N. Kasa, T. Iida, and L. Chen, “Flyback inverter controlled by sensorless currentMPPTfor photovoltaic power system,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1145–1152, Aug. 2005. [7] N. S. D’Souza, L. A. C. Lopes, and X. Liu, “An intelligent maximum power point H.Akhgari in - Tafresh University Photovoltaic Seminar, 8, 2011 trackerMPPT using peakMarch current control,” Proc. 36th Annu. 31 /43 IEEE Power Electron. Spec. مراجع [9] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point trackingmethod,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963–973, Jul. 2005. [10] T. Tafticht and K. Agbossou, “Development of a MPPT method for photovoltaic systems,” in Canadian Conf. Elect. Comput. Eng., 2004, pp. 1123– 1126. [11] S. Jain andV.Agarwal, “A newalgorithm for rapid tracking of approximate maximum power point in photovoltaic systems,” IEEE Power Electron. Lett., vol. 2, no. 1, pp. 16–19, Mar. 2004. [12] Y. Jung, G. Yu, J. Choi, and J. Choi, “High-frequency DC link inverter for gridconnected photovoltaic system,” in Conf. Record Twenty-Ninth IEEE Photovoltaic Spec. Conf., 2002, pp. 1410–1413. [13] Y.-T. Hsiao and C.-H. Chen, “Maximum power tracking for photovoltaic power system,” in Conf. Record 37th IAS Annu. Meeting Ind. Appl. Conf. , 2002, pp. 1035–1040. [14] K. Chomsuwan, P. Prisuwanna, and V. Monyakul, “Photovoltaic gridconnected inverter using two-switch buck-boost converter,” in Conf. Record Twenty-Ninth IEEE Photovoltaic Spec. Conf., 2002, pp. 1527– 1530. [15] M.-L. Chiang, C.-C. Hua, and J.-R. Lin, “Direct power control for distributed PV power system,” in Proc. Power Convers. Conf., 2002, pp. 311– 315. - Tafreshcontrol Universityof Photovoltaic MPPT Hua Seminar, March 8, 2011 [16] C.-C. and J.-R. Lin,H.Akhgari “Fully digital 32 /43 distributed photovoltaic power مراجع [17] L. Zhang, A. Al-Amoudi, and Y. Bai, “Real-time maximum power point tracking for grid-connected photovoltaic systems,” in Proc. Eighth Int. Conf. Power Electronics Variable Speed Drives, 2000, pp. 124–129. [18] N. Kasa, T. Iida, and H. Iwamoto, “Maximum power point tracking with capacitor identifier for photovoltaic power system,” in Proc. Eighth Int. Conf. Power Electron. Variable Speed Drives, 2000, pp. 130–135. [19] A. Al-Amoudi and L. Zhang, “Optimal control of a grid-connected PV system for maximum power point tracking and unity power factor,” in Proc. Seventh Int. Conf. Power Electron. Variable Speed Drives, 1998, pp. 80–85. [20] M. A. Slonim and L. M. Rahovich, “Maximum power point regulator for 4 kWsolar cell array connected through invertor to the AC grid,” in Proc. 31st Intersociety Energy Conver. Eng. Conf., 1996, pp. 1669–1672. [21] C. Hua and J. R. Lin, “DSP-based controller application in battery storage of photovoltaic system,” in Proc. IEEE IECON 22nd Int. Conf. Ind. Electron., Contr. Instrum., 1996, pp. 1705–1710. [22] K. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” Proc. Inst. Elect. Eng., vol. 142, no. 1, pp. 59-64, Jan. 1995. [23] W. Xiao and W. G. Dunford, “A modified adaptive hill climbing MPPT method for /43 - Tafresh Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari photovoltaic power systems,” in Proc. 35th University Annu. IEEE Power Electron. Spec.33Conf. , مراجع [25] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electron., vol. 16, no. 21, pp. 46–54, Jan. 2001. [26] O. Hashimoto, T. Shimizu, and G. Kimura, “A novel high performance utility interactive photovoltaic inverter system,” in Conf. Record 2000 IEEE Ind. Applicat. Conf., 2000, pp. 2255–2260. [27] Y. Kim, H. Jo, and D. Kim, “A new peak power tracker for cost-effective photovoltaic power system,” in Proc. 31st Intersociety Energy Convers. Eng. Conf., 1996, pp. 1673– 1678. [28] W. J. A. Teulings, J. C. Marpinard, A. Capel, and D. O’Sullivan, “A new maximum power point tracking system,” in Proc. 24th Annu. IEEE Power Electron. Spec. Conf., 1993, pp. 833–838. [29] Qiang Mei, Mingwei Shan, Liying Liu, and Josep M. Guerrero, “A novel improved variable step-size incremental resistance (inr) mppt method for pv systems,” IEEE 2010. [30] Bae, H.S., Lee, S.J., Choi, K.S., Cho, B.H., Jang, S.S., “Current control design for a grid connected photovoltaic/fuel cell dc-ac inverter” APEC 2009, 24th Annu. IEEE Power Electron. Spec. Conf., 2009 , pp. 1945 – 1950. [31] Fangrui Liu, Shanxu Duan, Fei Liu, Bangyin Liu, and Yong Kang, “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Travs. Ind. Electron., vol. 55, no. 7, Jul. 34 /43 Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University 2008. مراجع [33] Chee Wei Tan, Green, T.C., Hernandez-Aramburo, C.A., “An improved maximum power point tracking algorithm with current-mode control for photovoltaic applications” PEDS 2005, IEEE International Conf., on Vol. 1, Iss., pp. 489 – 494. [34] H. Koizumi and K. Kurokawa, “A novel maximum power point tracking method for PV module integrated converter,” in Proc. 36th Annu. IEEE Power Electron. Spec. Conf., 2005, pp. 2081–2086. [35] W. Wu, N. Pongratananukul, W. Qiu, K. Rustom, T. Kasparis, and I. Batarseh, “DSPbased multiple peak power tracking for expandable power system,” in Eighteenth Annu. IEEE Appl. Power Electron. Conf., 2003, pp. 525–530. [36] K.Kobayashi, I. Takano, andY. Sawada, “A study on a two stagemaximum power point tracking control of a photovoltaic system under partially shaded insolation conditions,” in IEEE Power Eng. Soc. Gen.Meet., 2003, pp. 2612–2617. [37] G. J. Yu, Y. S. Jung, J. Y. Choi, I. Choy, J. H. Song, and G. S. Kim, “A novel two-mode MPPT control algorithm based on comparative study of existing algorithms,” in Conf. Record Twenty-Ninth IEEE Photovoltaic Spec. Conf., 2002, pp. 1531–1534. [38] Y.-C. Kuo, T.-J. Liang, and J.-F. Chen, “Novel maximum-power-pointtracking controller for photovoltaic energy conversion system,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 594–601, Jun. 2001. [39] T.-Y. Kim, H.-G. Ahn, S. K. Park, and Y.-K. Lee, “A novel maximum power point 35 /43 - Tafresh University Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari tracking control for photovoltaic power system under rapidly changing solar radiation,” مراجع [40] K. Irisawa, T. Saito, I. Takano, and Y. Sawada, “Maximum power point tracking control of photovoltaic generation system under non-uniform insolation by means of monitoring cells,” in Conf. Record Twenty-Eighth IEEE Photovoltaic Spec. Conf., 2000, pp. 1707–1710. [41] A. Brambilla, M. Gambarara, A. Garutti, and F. Ronchi, “New approach to photovoltaic arrays maximum power point tracking,” in Proc. 30th Annu. IEEE Power Electron. Spec. Conf., 1999, pp. 632–637. [42] K. H. Hussein and I. Mota, “Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric conditions,” in IEE Proc. Generation Transmiss. Distrib., 1995, pp. 59–64. [43] J. Harada and G. Zhao, “Controlled power-interface between solar cells and ac sources,” in IEEE Telecommun. Power Conf., 1989, pp. 22.1/1–22.1/7. [44] E. N. Costogue and S. Lindena, “Comparison of candidate solar array maximum power utilization approaches,” in Intersociety Energy Conversion Eng. Conf., 1976, pp. 1449–1456. [45] Trishan Esram, Jonathan W. Kimball, Philip T. Krein, Patrick L. Chapman, and Pallab Midya, “Dynamic Maximum Power Point Tracking of Photovoltaic Arrays Using Ripple Correlation Control,” IEEE Trans. Power Electron., vol. 21, no. 5, Sep. 2006. [46] L. Stamenic, M. Greig, E. Smiley, and R. Stojanovic, “Maximum power point tracking 36 /43 - Tafresh University Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgariventilation for building integrated photovoltaic systems,” in Proc. IEEE Photovoltaic مراجع [47] P. Midya, P. T. Krein, R. J. Turnbull, R. Reppa, and J. Kimball, “Dynamic maximum power point tracker for photovoltaic applications,” in Proc. 27th Annu. IEEE Power Electron. Spec. Conf., 1996, pp. 1710–1716. [48] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system,” in Proc. 2000 IEEE Int. Symp. Ind. Electron., 2000, pp. 157– 162. [49] B. Bekker and H. J. Beukes, “Finding an optimal PV panel maximum power point tracking method,” in Proc. 7th AFRICON Conf. Africa, 2004, pp. 1125–1129. [50] K. Kobayashi, H. Matsuo, and Y. Sekine, “A novel optimum operating point tracker of the solar cell power supply system,” in Proc. 35th Annu. IEEE Power Electron. Spec. Conf., 2004, pp. 2147–2151. [51] H.-J. Noh, D.-Y. Lee, and D.-S. Hyun, “An improved MPPT converter with current compensation method for small scaled PV-applications,” in Proc. 28th Annu. Conf. Ind. Electron. Soc., 2002, pp. 1113–1118. [52] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking,” IEEE Trans. Energy Convers., vol. 17, no. 4, pp. 514–522, Dec. 2002. [53] D. J. Patterson, “Electrical system design for a solar powered vehicle,” in Proc. 21st Annu. IEEE Power Electron. Spec. Conf., 1990, pp. 618–622. Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University 37 /43 مراجع [55] N. Mutoh, T. Matuo, K. Okada, and M. Sakai, “Prediction-data-based maximumpower-point-tracking method for photovoltaic power generation systems,” in Proc. 33rd Annu. IEEE Power Electron. Spec. Conf., 2002, pp. 1489–1494. [56] Syafaruddin, E. Karatepe, and T. Hiyama, “Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions,” IET Renew. Power Gener., 2009, Vol. 3, Iss. 2, pp. 239–253. [57] C. Larbes, S.M. Aıit Cheikh, T. Obeidi, and A. Zerguerras, “Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system,” Renewable Energy 34 (2009) 2093–2100. [58] N. Ammasai Gounden, Sabitha Ann Peter, Himaja Nallandula, and S. Krithiga, “Fuzzy logic controller with MPPT using line-commutated inverter for three-phase gridconnected photovoltaic systems,” Renewable Energy 34 (2009) 909–915. [59] I.H. Altas, and A.M. Sharaf, “A novel maximum power fuzzy logic controller for photovoltaic solar energy systems,” Renewable Energy 33 (2008) 388–399. [60] N. Khaehintung, K. Pramotung, B. Tuvirat, and P. Sirisuk, “RISCmicrocontroller built-in fuzzy logic controller of maximum power point tracking for solar-powered lightflasher applications,” in Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc. , 2004, pp. 2673– 2678. [61] M. Veerachary, T. Senjyu, and K. Uezato, “Neural-network-based maximum-power38 /43 - Tafresh University Photovoltaic MPPTof Seminar, March 8, 2011 H.Akhgari point tracking coupled-inductor interleaved-boostconvertersupplied PV system using مراجع [62] M. Veerachary, T. Senjyu, and K. Uezato, “Feedforward Maximum Power Point Tracking of PV Systems Using Fuzzy Controller,” IEEE Trans. Aerosp. Electron. Syst. , vol. 38, no. 3 Jul. 2002. [63] B. M.Wilamowski and X. Li, “Fuzzy system basedmaximum power point tracking for PV system,” in Proc. 28th Annu. Conf. IEEE Ind. Electron. Soc., 2002, pp. 3280–3284. [64] N. Patcharaprakiti and S. Premrudeepreechacharn, “Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system,” in IEEE Power Eng. Soc. Winter Meet., 2002, pp. 372– 377. [65] A. M. A. Mahmoud, H. M. Mashaly, S. A. Kandil, H. El Khashab, and M. N. F. Nashed, “Fuzzy logic implementation for photovoltaic maximum power tracking,” in Proc. 9th IEEE Int. Workshop Robot Human Interactive Commun., 2000, pp. 155–160. [66] M. G. Simoes, N. N. Franceschetti, and M. Friedhofer, “A fuzzy logic based photovoltaic peak power tracking control,” in Proc. IEEE Int. Symp. Ind. Electron., 1998, pp. 300–305. [67] G.-J. Yu, M.-W. Jung, J. Song, I.-S. Cha, and I.-H. Hwang, “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller,” in Proc. IEEE Photovoltaic Spec. Conf., 1996, pp. 1429–1432. [68] T. Senjyu and K. Uezato, “Maximum power point tracker using fuzzy control for photovoltaic arrays,” in Proc. IEEE Int. Conf. Ind. Technol., 1994, pp. 143–147. Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University 39 /43 مراجع [70] R. M. Hilloowala and A. M. Sharaf, “A rule-based fuzzy logic controller for a PWM inverter in photo-voltaic energy conversion scheme,” in Proc. IEEE Ind. Appl. Soc. Annu. Meet., 1992, pp. 762–769. [71] Chokri Ben Salah, and Mohamed Ouali, “Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems,” Electric Power Systems Research 81 (2011) 43–50. [72] L. Zhang, Y. Bai, and A. Al-Amoudi, “GA-RBF neural network based maximum power point tracking for grid-connected photovoltaic systems,” in Proc. Int.Conf. Power Electron.,Machines and Drives, 2002, pp. 18–23. [73] X. Sun, W. Wu, X. Li, and Q. Zhao, “A research on photovoltaic energy controlling system with maximum power point tracking,” in Proc. Power Convers. Conf., 2002, pp. 822–826. [74] A. Hussein,K.Hirasawa, J. Hu, and J. Murata, “The dynamic performance of photovoltaic supplied dc motor fed from DC–DC converter and controlled by neural networks,” in Proc. Int. Joint Conf. Neural Netw., 2002, pp. 607–612. [75] K. Ro and S. Rahman, “Two-loop controller for maximizing performance of a gridconnected photovoltaic-fuel cell hybrid power plant,” IEEE Trans. Energy Convers., vol. 13, no. 3, pp. 276–281, Sep. 1998. [76] T. Hiyama, S. Kouzuma, and T. Imakubo, “Identification of optimal operating point 40 /43 H.Akhgarifor - Tafresh Photovoltaic MPPT Seminar, March 8, 2011 of PV modules using neural network real University time maximum power tracking control,” مراجع [78] T. Kitano, M. Matsui, and D.-h. Xu, “Power sensor-less MPPT control scheme utilizing power balance at DC link-system design to ensure stability and response,” in Proc. 27th Annu. Conf. IEEE Ind. Electron. Soc. , 2001, pp. 1309–1314. [79] M. Matsui, T. Kitano, D.-h. Xu, and Z.-q. Yang, “A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC link,” in Conf. Record 1999 IEEE Ind. Appl. Conf., 1999, pp. 804–809. [80] D. Shmilovitz, “On the control of photovoltaic maximum power point tracker via output parameters,” in IEEE Proc. Elect. Power Appl., 2005, pp. 239–248. [81] J. Arias, F. F. Linera, J. Martin-Ramos, A. M. Pernia, and J. Cambronero, “A modular PV regulator based on microcontroller with maximum power point tracking,” in Proc. IEEE Ind. Appl. Conf., 2004, pp. 1178–1184. [82] A. S. Kislovski and R. Redl, “Maximum-power-tracking using positive feedback,” in Proc. 25th Annu. IEEE Power Electron. Spec. Conf. , 1994, pp. 1065–1068. [83] C. R. Sullivan and M. J. Powers, “Ahigh-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle,” in Proc. 24th Annu. IEEE Power Electron. Spec. Conf., 1993, pp. 574–580. [84] H. J. Beukes and J. H. R. Enslin, “Analysis of a new compound converter as MPPT, battery regulator and bus regulator for satellite power systems,” in Proc. 24th Annu. IEEE Power Electron. Spec. Conf., 1993, pp. 846–852. Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University 41 /43 مراجع [86] C.-L. Hou, J. Wu, M. Zhang, J.-M. Yang, and J.-P. Li, “Application of adaptive algorithm of solar cell battery charger,” in Proc. IEEE Int. Conf. Elect. Utility Deregulation Restruct. Power Technol., 2004, pp. 810–813. [87] J. A. M. Bleijs and A. Gow, “Fast maximum power point control of current-fed DC–DC converter for photovoltaic arrays,” Electron. Lett., vol. 37, pp. 5–6, Jan. 2001. [88] S. J. Chiang, K. T. Chang, and C. Y. Yen, “Residential photovoltaic energy storage system,” IEEE Trans. Ind. Electron., vol. 45, no. 3, pp. 385–394, Jun. 1998. [89] H. Sugimoto and H. Dong, “A new scheme for maximum photovoltaic power tracking control,” in Proc. Power Convers. Conf., 1997, pp. 691– 696. [90] R. Bhide and S. R. Bhat, “Modular power conditioning unit for photovoltaic applications,” in Proc. 23rd Annu. IEEE Power Electron. Spec. Conf., 1992, pp. 708–713. Photovoltaic MPPT Seminar, March 8, 2011 H.Akhgari - Tafresh University 42 /43

51,000 تومان