معماری و عمرانعلوم مهندسی

Behavior Modeling and Design

صفحه 1:
18 ‏متم طع‎ Modeling and Design of Shear Wall- ۱۵ ‏كلاه دزت‎ Naveed Anwar Asian Center for Engineering Computations and Software, Pe te

صفحه 2:
The Basic Issues 0 CoreC) boot ge ets Bre ~ Transfer of loads to shear walls - Modeling of shear walls in 2D - Modeling of shear Walls in 3D 2 - Interaction of shear-walls with frames * Design and detaining issues - Determination of rebars for flexure - Determination of rebars for shear - Detailing of rebars near openings and corners - Design and detailing of connection between various commonest of cellular shear walls Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 3:
Due to misleading name “Shear Wall” pi " The dominant mode of failure is shear " Strength is controlled by shear = Designed is governed primarily by shear " Force distribution can be based on relative stiffness Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 4:
Shear Wall or Column

صفحه 5:
۱ Shear Wall or Frame Shear Wall Shear Wall or Frame ? Ss =>

صفحه 6:
Shear Wall and Frame Behavior Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 7:
Shear Wall and Truss Behavior Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 8:
Shear Wall and Frame Shear Wall Behavior ‏ا‎

صفحه 9:
‎AIT ۱۳ POCCODE‏ مس0 و 4 رطط ,هه ‎Od‏ و۵ ‎ ‎ ‎

صفحه 10:
Frame and Frame-Shear Wall

صفحه 11:
۰ Frames Deform - Predominantly in a shear mode - Source of lateral resistance is the rigidity of beam- column/slab joints 2 ۶ ‏انعد للع‎ - Essentially in bending mode - Shear deformations are rarely significant - Only very low shear walls with H/W ratio <1 fail in shear - Behave mostly like a slender cantilever - Designed to resist the combined effect of axial, bending and shear Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 12:
The Basic Behavior of ‘ar Walls, Frames and Shear Wall-Fri Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 13:
9۱ ‏ای‎ Only Frame Only Shear + ۳9 a 1 Frame ( Total 3 ) 10121300255639 -- - - 2 ‏و وت خ‎ 1 Cases ) a 9 23 00 rr Cases: Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 14:
۱ 0 له سس رف( سم 3 ‎Chea‏

صفحه 15:
Cl Interaction ‎bs SV acc‏ - اام ‎0 ‎ ‎OC ea rete ‏موت 0ل‎ ‎ ‎5 ‏0 له سس رف( مه ‎Chea Dd‏

صفحه 16:
Interaction

صفحه 17:
00 85. 0 0 له سس رف( مه ‎Chea Dd‏

صفحه 18:
۱ ۱

صفحه 19:
۱ مس 9۵ مت 9 > مس مها دوت كن" رون كم - ‎COR‏ Chea Od rhator, Dodebay, ‏له سس‎ 0

صفحه 20:
مس 90 - مس لوط 3-4 ,بط( عم 3 وق

صفحه 21:
مس مت ‎er UO Bad‏ Oke Od ‏بط ,وه‎ J

صفحه 22:
7 0 له سس رف( مه ‎Chea Dd‏

صفحه 23:
الات eect

صفحه 24:
Qorey Orfevitos (IOGorey Gulkdtog) Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 25:
Shear Wall-Frame Interaction Gorey OeRecitoa (@DGvrey @utldtas) Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 26:
Shear Wall-Frame Interaction Qorey Orfevitos (DGorey Butldtag) Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 27:
Shear Wall-Frame Interaction A < ‏انا ۳ 6۳۳ | سم‎ = Porve / A he (poem ee LOE Ep SE 4 ‏مم - 9001006 - .ىسايق‎ ‏ط نه ند‎ 2002 KO eS 6۸9: 9, ‏یر‎ - 600 / 02.66 - 9.79« 2-0 90*۲0۵ 2 ین دادیم عسخ۵۳ 0۵0006 لب 0 له سس رف( سم 3 ‎Chea‏

صفحه 28:
Change in Shear Wall Moments slab w/bearn coupling 1 — ‏ومو و‎ 1000 1600 2006 2500 3000 500. Shearwall Murent (He kips مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵

صفحه 29:
Coupling Element Moments مومس م2 وا وه ‎Coupling Elements (tekips)‏ ] مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵

صفحه 30:
112641 ١9 62۳ ۸ 6080867 ۸ Di ۳ 7 - Chea 3 ‏له سس رف( سم‎ 0 AIT ۱۳ POCCODE

صفحه 31:
Distance {rom graund 2 5 9 Uniform Load = Trangular Load 1 1 0.5 06 07 08 Deflection of structure ] 10۳ ‎AIT ۱۳ POCCODE‏ مس0 و 4 رطط ,هه ‎Od‏ و۵ ‎ ‎ ‎ ‎ ‎ ‎ ‎

صفحه 32:

صفحه 33:
Comparison of... : Type A | tt tt of iing=110 8 3 مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵

صفحه 34:
سس ورزد شتسه هلف ‎aot‏ تم ۱۷۱ ‏ما‎ aa

صفحه 35:
Comparison of... : Type C مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵

صفحه 36:
Comparison of... : Type D 1 il lenghof balding 110 ‏سس‎ ‎2 wt اكاب وص ووو مس0 و 4 00 ,هه ‎Od‏ و۵

صفحه 37:
AIT ۱۳ POCCODE

صفحه 38:
Wall-Frame Interaction: Key Conclusions The shear wall deform predominantly in bending mode - The common assumptions to neglect the frames in lateral load resistance can lead to grossly erroneous 1 ‏ارت‎ - Consideration of shear wall-frame interaction leads to a more economic design - The shear walls should be designed to resist the combined effect of axial, bending and shear = ‏نان رو‎ og the alee ee in aot in very important, both Ghee Od Prkatr, ee cere ert ‏سس‎

صفحه 39:
Basic Types of Shear Walls _ سيت

صفحه 40:
we Basic Types of Shear Walls __

صفحه 41:

صفحه 42:
Simple Beam 8۰3۳ ۱[ عاصه‌صعاه تن وون۳۷* ‎with rigid‏ سرت ‎Model”‏ 5لمع Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 43:
Frame Model for Planer Walls ۱ 0 On ecad Cee aie tec na ۱ ea ‏كك‎ 00 Rae oe eae ed — ‏سم‎ +: 01 0 ke Se eM Rr a ۱ coe cA en ola co bir Pane Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 44:
Frame Models for Cellular Walls Difficult to extend the Coleyitersy el Mm KOM ‏ا‎ ٠ ‏اقا ۱۷۵ مهن‎ 6 eN aK to “equivalent” column and ‏كأصعدمعاء “لأيت” عمأمتدمم رمه‎ * Can be used in 2D analysis but more complicated for 3D analysis ل ا الا كان ا ‎converted to planer wall, the‏ ‎simplified procedure cab‏ ‎used for modeling‏ Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 45:
Walls are subjected to in-plane deformations so 2D elements that have transnational DOF need to be used * Acoarse mesh can be used to capture the 2 overall stiffness and deformation of the wall ‏ا الا وا‎ yi Alnac minty ey tbat) bending or curvature * General Shell Element or Membrane Elements can be used to model Shear Walls Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 46:
A Modeling Walls Using M e Nodes: 4 DOFs: 2 DOFs /Node Ux and Uy 2-Translation 1 ۱ Dimension: 2 dimension element ‎eae‏ اا لكت ‎Properties: Modulus of Elasticity(E),‏ ‎Poisson ratio(v), Thickness(t )

صفحه 47:
00611110 Wallis using pl 061 Nodes: 4 DOFs: 3 DOFs /Node Ux and Uy and Rz 7 7/۷ ‏ا ال‎ Shape: Regular / Irregul. — Properties: Modulus of Elasticity(E) Poisson ratio(v), Thickness(t ) Dimension: 2 dimension element Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 48:
Using Incomplete Membrane Using with Beams and or 00۲ Columns are Required (No Moment continuity with (Full Moment continuity ‏(كمتدو8‎ with Beams and Columns) Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 49:
ter accuracy in determination of ‏و‎ ‎easy modeling of openings Using Complete Membrane Using with Beams, 00۲ ‏عصصبامن‎ ‎is NOT Required (Moment continuity ‏"الدع سمغبة مصدع8 طاغتيور‎ ‏اللي‎ (Car MB UC rtontmelystaretttin with Beams and Column: Okra (9 Pekar, Dodetoy, Badyer cod Devi

صفحه 50:
ing Walls to Slab Some software automatically establishes connectivity by using constraints or “Zipper” ‏اك ان‎ Conne / In general the mesh in the slab should match with mesh ‏طعتاطهؤدة مغ 1لهت1 قط صذ‎ connection

صفحه 51:
* The behavior of shear walls can be closely EV Hectic m maar omc OH - The vertical elements provide the axial-flexural ‏ةا‎ eLc) 2 - The diagonal elements provide the shear resistance Ce Bat ‏ا ل ال لان ا ا ا ا‎ concepts * This model represents the “cracked” state of ‏صرح عهنا بط مها 6 صمتعصها له عتمطای الق انا‎ compression by concrete Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 52:
Truss Model for Shear Walls Comparing Deformation and Deflections of Shell Model with Truss Model Ghew Ord Debate, Oodet

صفحه 53:
Truss Model for Shear Walls Comparing Deformation and Deflections of Shell Model with Truss Model Ohea Dd ‏مه‎ ۵

صفحه 54:
Truss Models for Shear Walls Comparing Axial Stress and Axial Force Patterns Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 55:

صفحه 56:
How to Construct Truss Models For the purpose of analysis, assume ‏لل ل ا ال نا‎ width and floor levels ‎L}‏ ا 1لا ‎estimated as t x 2t for main axial Sutil ‏ل لل‎ members ‎ay‏ ا ا كا ‎truss. It is not necessary to use‏ ‎truss elements‏ ‎Generally single diagonal is sufficient for modeling but double diagonal may be used for easier interpretation of results ‎The floor beams and slabs can be COA Kemal MRO RAT Cnty ‎ ‎tx2t ‎ ‎ ‎AIT - Teak POCCODE ‎Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 57:
_Openings in Shear Walls. Very Large Openings may lena TCM to Frame 86207 er) Vala) Medium Openings may convert shear wall to Pier and Spandrel System iia — — 5207 ۱6۲ Very Small ]9( ering not alter wall ‏و۱۱‎ = =

صفحه 58:
Openings in Shear Wa. Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 59:
Openings in Shear Walls - Planer 1 0 له سس رف( سم 3 ‎Chea‏

صفحه 60:
; Modeling Walls with Opening 01 ۲:۵ لأزونه ل ‎mC‏ انا 0 له سس رف( مه ‎Chea Dd‏

صفحه 61:
۱

صفحه 62:
- 4-Node plane element may not accurately capture the linear bending, because constant shear distribution is assumed in formulation but actually shear stress 2 distribution is parabolic - Since the basic philosophy of RC design is based on cracked sections, it is not possible to use the finite ‏اون عملباوع! عاصمصواه‎ ۶0۲ 1 - Very simple model (beam-column) which can also captures the behavior of the structure, The results can be used directly to design the concrete elements. Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 63:
Shear Wall Design -Meshing Shell Deformations: - ‏همعط‎ eed oe La ee RT ‏وعمءترو يت فلنام أمعسرعكء افطع‎ - A single shell element in the program ‏تترم1ع0 لهتكه قصة “تمعطاى عع سساحرده‎ 205 1 Eola Ba ‏ولسءط ارده‎ b) Shear Deformation c} Bending

صفحه 64:
0 له سس رف( مه ‎Chea Dd‏

صفحه 65:
0 له سس رف( مه ‎Chea Dd‏

صفحه 66:
Comparison of Behavior

صفحه 67:
+4 44014 aT?

صفحه 68:

صفحه 69:

صفحه 70:
ect of Shear Wall L Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 71:
۳ ty of Shear Walls In ETABS

صفحه 72:
- Zoning Ce ON ‏لب لس‎ ۱ - Labeling . ‏سرهم‎ ‎| ۰ ‏ی‎ - Section Types 0 Cn od (OM aoe) ‏أ‎ eee ncaa ۱

صفحه 73:
Shear Wall Design -Meshing Appropriate Meshing and labeling of Shear Walls is the key to proper modeling and design of walls No automatic meshing is available for walls (only manual) Loads are only transferred to walls at the corner points of the area objects that make up ‏ات‎ Generally the Membrane or Shell type Elements should be used to model walls * Wall Meshing a Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 74:
Wall Meshing: - Piers and spandrels where bending deformations are significant (slender piers and spandrels), need to mesh the pier or spandrel into several elements - If the aspect ratio of a pier or spandrel one shell element is worse than 3 to 1, consider additional puoshing of the element to 0017

صفحه 75:
Shear Wall Design - Pier Zones __ Pier Zone Labeling (Naming/Grouping) ree a Mec Ne cae Re ee coe 02000 ‏ل‎ 7 eed Regen AO ae enone ae Coe NE Rad ae aaa ed edt a Reel Ra coe as EER Dol a Rie hoor ed yet pulput Porces Por the elewedt or bePore pou coo desiqa the elewet. ©0000 بو - ۸۱۲ مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵

صفحه 76:
Shear Wall Design - Pier Zones Se ‏لي ا‎ 7 mh ce ace a ۱ cae ase ‎ot stativar‏ اا ‎booted at he top aed botiear oP ual pier elewents.‏ ‎ ‎Draked _POCOODE ‎Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 77:
۱) ‏6ستاعطهة]آ‎ ‎Examples

صفحه 78:
eneral Comments ۴ Cased TR aE a ‏ل‎ ‎Pd SSE ae aR e LA caida a ee 00 00 ‏ا م‎ ne Re Beane a aoe Oe han marae ease oR De 9۳ CAN La a el ead ‏(عسام‎ 566100 ۲6۴ ‏و85‎ ‎at Il Floor Top

صفحه 79:
2 General Pa Case a: 9 cee Cental ie eek ne a 0 ‏موم‎ ‎0 ‏0ك‎ ‎em neta eee R coed ‏موی با مسا موجه )و‎ 00 وه ا 0ك 00000000 bower bevel.

صفحه 80:
Genera comment Case a (Common Way): ek eel i Nek ane cae] De ‏ا‎ ‎Cee een hte feet dood ca oe ‏سول‎ ‎eT ae‏ ره ‏رت ‏ره ‏| ‏ره ‏ار و بات بل لو ول با بط ‎Ce eee ed coe a ‎ ‎ ‎

صفحه 81:
Sections يدير و یوت ‎tive‏ ‎Unite: Kinin‏ و ما ‏يدير ‎‘orn‏ ‎va ‎uo ‎a0 ‎om ‎ama ‎STORY® PotD: ‏عماج اليم‎ ‏رمس عنام ‎Flew‏ ل ‎ato‏ ‎ ‎۱9۵2 4 ‎ee i )0 ‏عوام جنوج‎ -© ۱۱۱ ‏عونم‎ 46 ‏ععذم طاعوع 06] غنام أن 0 ‎ow ‎1 ‎pa ‎

صفحه 82:
Shear Wall Design - Spandrel Zones Spandrel Zone Labeling (Naming/Grouping) 05 aE aa sR cao Wo) Nea ar ee cl (acd) 1 5 ce rca aN cae RENE a Ba cB Cacao Sn Oa ec cad ea ioe concede cca vce REE aoe CA RR cca ei oI OA Carico Ce ca Rc cee eR ANN ci Dee al Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 83:
Shear Wall Design - Pier Zones Example of Possibly Incomplete Wall Pier Labeling مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵

صفحه 84:
Shear Wall Design - Spandrel Zones Spandrels or ۳ - Wall spandrel forces are output at the left and right ends of wall spandrel Elements - Wall spandrel design is only performed at stations located at the left and right ends of wall spandrel elements - Multiple wall spandrel labels cannot be assigned to a single area object. Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 85:
Wa

صفحه 86:
Fully integrated wall pier and spandrel design ACI, UBC and Canadian Codes Design for static and dynamic loads Automatic integration of ‏صوصو 0صه عرمنص 101 وع©01]‎ 1

صفحه 87:
* Design based on : - Equilibrium Conditions — Strain Compatibility Principle ~ Linear Strain Variation | | | | 1 . Stress Diagrah ۳ | | Linear Strain nde

صفحه 88:

صفحه 89:
Concrete Shear Wall Design 2D wall pier design and boundary-member checks + 2D wall spandrel design * 3D wall pier check for provided reinforcement * Graphical Section Designer for concrete rebar 2 location * Graphical display of reinforcement and stress ۵105 * Interactive design and review * Summary and detailed reports including database formats Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 90:
Shear Wall - Typical Design Process تس تال بل زیر 2. Choose the Shear Wall design code and review other ‏فطع عوأالاعء عصة دععمعمعقعمم لعغواعء‎ Cet La ترا اعلمهمك لصة ععأم موأوكهة .3 2 درز ایا یار ات لیا .3 5ع الالزء لاه لاوأدكه8 .4 5. Select Design Combos اه راو ۱۳ 0 له سس رف( مه ‎Chea Dd‏

صفحه 91:
Shear Wall - Typical Design Process 7. View Design Input and Output Information 8. Design the Member Interactively 2 9. Print Design Report BRM elt Tile (mers etal lel تا رات ایا وت ‎pe‏ 12. Repeat the Above Cycle Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 92:
Shear Wall Design - Output Tablo 1 Shoar Wall Dosign Output Summary COLUNN HEADING DESCRIPTION ‘Simplified Pier Section Desian’ Sony Labo Labol of the story level aesooited with the pier Pier Label abel 7 ‘Salion Location This § ether Top or Bottom to designate the lop or ha bation tthe pier. ge Memb Len ‘The long oF ie userstetmed ede member, DBA, oF tie length ofthe program-detormined edge membor at tho kf sido tthe ples ‎Memo Rink | Thelenoti of the user-defined edge mombsr, DBT, or the‏ دولك ‎length ofthe program-determined edge member atthe igh‏ ‎‘se of he ple ‎‘Tho roared area of sted altho cantor ofthe edge moniber at ‎tie lel se ofthe pk. Note thal the area of steel reported here ‎|s the maximum of the required tension sleet andthe requirad ‎compression steel ‎AS Right ‘The filed area oT Stes al Ne center ofthe edges member al tho right sido f the pior. Noie that the area of stool rapartod ‎here isthe maximum cf the recuied tension steel and the = ‎quired compression steel ‎Av Shear The required area per unitiength (heigh) cf harizorial shear ‎‘eiorcina steel nthe pet ‎B Zone Length This om opplins only lo codes thal sonsidor boundary zone. ‎This isa teauited lena, sucha 22.762 incies, otis "Not ‎[Necdod\" ori "Net Checkad)" Not Needed! nc.eates thet ‎boundary oloments are not required. Noi Chooked mocns that ‎ny chock fos boundary elements is performed by the program ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎

صفحه 93:
i maximum requires rao caus othe etal arsa of vera & te Seaton Designer ion. Tsai is prodded asa benchmark to hes you un The mavirum area pat jot honaonia re Node" ort "Not Ch od dl under elarant chee 5 ا 0 Ege

صفحه 94:
‎Label‏ سس ‎[Piertabel [|‏ ‏|[ #قعوس] ‎mum area per unit length (height shear in the s ‎inches, ort is "Not ‎Needex cked.” Not Needed indicates that ‎boundan eked means that th ‎

صفحه 95:
Shear Wall Design - Output Spandrel Design Slory Label Label ofthe sory fovel assodated withthe spandrel ‎Label Label assigned to the spare‏ اه هرک ‎Station Location This is eer Left or Right to designate the left end or the ight end ofthe spandre ‎[107 “The length of he spancrel ۹1/۱32۹ the ‏اع‎ ‎Shear Vo “The conorete shear capacity used in the spandrel design, See ‎ ‎in Technical ‎ ‎etermine the e Shear Capach ‎in Technical. Note 8-99, of "Determine the C ‎‘Shear Canacitv’ in Technical Note Soandrel Shear Desian ‎S81 10-89 for more information. ‎Fleguired Feinforcing 5621 ‎ ‎ ‎andrei ‎ ‎2 ‎10 “The required area of flexural reinforcing steel at the top of the spandrel ‎“The required area of flexural reinforcing sted al the betlom of‏ لصالا ‎the spandrel‏ ‎3 “The required area per unit engin of vettioal shear reinforcing stool in ho spandal ‎An ‘The required area per unit length (height) of horizontal shear feinforcing steel in the spandrel, ‎Ave ‘The required area of diagonal shear reinforcing sieal in the ‎ ‎ ‎ ‎spandrel This tem is only calculated for selsmic piers. ‏ماه 9 حواق.‎ Doriobas, ‏سب سوت‎ eens: ۳۳۳۳۱ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎

صفحه 96:
The Basic Issues - Transfer of loads to shear walls - Modeling of shear walls in 2D - Modeling of shear Walls in 3D 4 - Interaction of shear-walls with frames * Design and detaining issues - Determination of rebars for flexure - Determination of rebars for shear - Detailing of rebars near openings and corners - Design and detailing of connection between ‏ل فلن‎ meter 0 له سس رف( مه ‎Chea Dd‏

صفحه 97:
A ~~ Eccentricity in 8 1 : : ayy Chea Od Pehaior, Dodebry, ‏له سس‎ 0 AIT - Teak POCCODE

صفحه 98:
0 له سس رف( سم 3 ‎Chea‏

صفحه 99:
Expansio Joint ۷ ايد ‎FE‏ ‏۳ ‎s 2‏ م د ذه 5 ‎ie]‏ د 3 2 ۳ 8 بم ‎ae‏ © ‎AS 75‏ ‎ean ‎q ee a 3 ‏ظ‎ ۵ ‎a oe > 5-5 ‎Wa ‏شنم(‎ ‎No Shear Walls ‎

صفحه 100:
0 له سس رف( مه ‎Chea Dd‏

صفحه 101:

صفحه 102:
0 له سس رف( مه ‎Chea Dd‏

صفحه 103:
Axial Stresses in Cellular Walls Uniaxial Bendin: Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 104:
Axial Stresses in Cellular Walls Biaxial Bending Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 105:
0 له سس رف( مه ‎Chea Dd‏

صفحه 106:
"+ C+ Dsin@) x. + Dsin@)x, ‎Compression‏ عمتعهع1 ‎Member Member‏ ‎ ‏©0000 بو - ۸۱۲ مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵

صفحه 107:
11 fn are the nodal stresses at section A-A , obtained from analysis 0۵0000 لمرلا مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵

صفحه 108:
The curve is generated by Dela sii maw Lied eb ‏طامرع0‎ بق ‎Nx= | paceraar 3 Bi‏ ia بل مه 3° ‎f(e)dadzt‏ مره il

صفحه 109:
تا لا ات تابن ۱ ‎changing Angle‏ ‎and Depth of‏ ‎Neutral Axis‏ 0 هد ره مرصده جر عد امآ 12 1 ‎dxdy: y..+ — ۴ 3‏ )م ] —|,$= ‎M,‏ ‏| مدرم ی ‎ey‏ سرا 5 وه - با ‎x.|‏ 9 مه برچ ومد جز دام لش |ممت رم ‎ ‎Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 110:
Interaction Surface and Curves =

صفحه 111:
3 ‏و‎ ‎The capacity is almost — completely un-axial ۹ Moment capacity can be increased by providing Rebars at the corners

صفحه 112:
The capacity is 212051: completely العاف ها

صفحه 113:
+ ~ عع 2 <2

صفحه 114:

صفحه 115:

صفحه 116:
Axial Zone Model - Planer Wall Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 117:

صفحه 118:

صفحه 119:
Shear Design of Pier “7 1 * Determine Concrete shear capacity, Vc ¢ Check if Vc exceeds the limit, if it does, section 7 | needs to be revised _ * Determine steel Rebars by 115-17-1 ¢ Check additional steel 101 ‏عتسدكلعءك‎ ‎requirements Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 120:
‎ACI Equations for Pier Design‏ دح ‎Basic Concrete a 5‏ ‎

صفحه 121:
۱ shear capaci * Check if Vc exceeds the limit, if it does, section 2 needs to be revised * Determine steel Rebars for Vs=V-Vc * Check additional steel for seismic requirements Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 122:
4 Check for minimum steel and spacing etc. ۲۲89۳9 مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵

صفحه 123:
5 quations tor Spanare 3 — 05 and ‎AIT ۱۳ POCCODE‏ مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵ ‎ ‎ ‎

صفحه 124:
Notations for Shear Design EMA e ‏ال‎ MRC ROM Restores fistance from bottom of spandrel to the centroid of bottom reinforcing 0 ‏امتفصدوه ۶ه‎ = Shear reduction factor as specified in the concrete material properties for light weight concrete. 5 Te Mod eters ot ortion of Shear force in spandrel carried by reinforcing steel Joan Morac) rvs occ BU Ms cetera eres Neon ec122 Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 125:
Wall Sec 7 6 ‏ا لا‎ ‏ااي اانا‎ he middle portion * Confine the Rebars at the end for improved ductility and increased moment capacity Option -1 Option -2 Option -3 Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 126:
Moment a for 1% Rebars Nearly 25% increase for same steel

صفحه 127:
9 تا اس سس ۱ عاناطساكتل مسد كع صرم ‎the remaining in the‏ سییر ۱۱ Confine the Rebars at ‏1ط 101 ستعصرمه عط‎ ductility and increased moment capacity Provide U-Bars at the ‏لتعأكدة 101 كتزاع ترون‎ ا ال اننا improved laps Chea Od Pehaior, Dodebry, ‏له سس‎ 0 ۲۲89۳9

صفحه 128:
Moment Capacity for 1% Rebar:

صفحه 129:
Rebar Detailing For Openings __ Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 130:
ی 0-5-2 ess of ۱1 ۱۱۱۱۱۱۱

صفحه 131:
Complexity 7 | ۰ ‎Te ۳۳‏ ل ‎2 ‎ ‎ ‎Slenderness: ‎ ‎Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 132:
a ۱۵۵۸ مشک فایلا تاد ۱ Short Column LongColumn Column Capacity (P-M

صفحه 133:
* “Effective” Length - Actual Length ۱ - End Framing and Boundary Conditions - Lateral Bracing Conditions * “Effective” Stiffness - Cross-sections Dimensions and Proportions - Reinforcement amount and Distribution - Modulus of Elasticity of Concrete and Steel - Creep and Sustained Loads * Loads - Axial Load - End Moments and Moments along the Length Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 134:
137ل ااا ‎ee‏ للش ‎Larger Non- Sway Moment‏ اانا ‎Larger Sway‏ از ات ‎Momen t‏ 3 ‎ ‎C,, =0.6+ ‏له‎ 204 M2

صفحه 135:
What is Sway Sway is dependent upot ructural configuration as well as type of loadin RRS ‎May be Sway‏ ۷۵ 12 ناماع مس مس تسف 9 ‏غك ‎seers)‏ ‎ ‎Chea Od Pehaior, Dodebry, ‏له سس‎ 0 ‎ ‎ ‎

صفحه 136:
۱ What is Sway SNe جد * Appreciable rel. 3 ioment of two ends of column A Chea Od Pehaior, Dodebry, ‏له سس‎ 0

صفحه 137:
. More on Sway 2 * Unbraced Column (Sway) 1 : Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 138:
Calculation of 6,,, (Non-Sway) 0ل 9 ‎ccc‏ لك ‎

صفحه 139:
The C,, Factor The Moment and Stress Amplification Factors are derived on the basis of pin-ended columns with (C,, = 1.0) For other Moment ‎i Oe 60‏ مط رصمتاطنتعنط ‎correction factor C,, ۱ 121112 ۱۷/۹/۸‏ ‎needs to be computed to ۱ | Negative‏ ‎modify the stress i 5‏ ‎amplification. 111 15 26 55221167 0‏ ‏بر ‎ ‏مممهههه ی ۸۱7 مسب ییوس 0

صفحه 140:
re about C,, Factor we i | 3 3 5 ّ > ۵ 1 2 كل

صفحه 141:
Effective Length Factor, K. * To account for “Axial-Flexural Buckling” 1۱ cne CM boas ta Romeo ttt ty inflection points ۱ ‏ارچ‎ ROBT * Most common range 0.75 to 2.0

صفحه 142:
... Determination of K * Members Part 1 ‘ramed Structure geet Go 1+ G, forG,<2 Odraed 20 ‏حدد‎ K=09/(+G,) 105 ‏ي©‎ <2 Orv K=0.7+0.0%G,+G,) <1.0 (oie) | K=0.85+0.05G, <1.0 _S(El/ Ie) Columns G, =TopEnd S(El/ D Beams G, =BottonEnd KaG G IncreasK Increas: G, = Minimum G, and G, مس0 و 4 ‎Ordeby,‏ ,هه ‎Od‏ و۵

صفحه 143:
‎Determination of K.‏ ... سا ‎* Isolated Memb ‎ ‎ ‎Bottom ‎AIT - Teak POCCODE ‎ ‎Chea Dd Brbator, Dodebay, Poder wd Dewi

صفحه 144:
More about Factor K S(EI/I,) Columns 2) Beams Kay 1 0 0 ‏ا‎ Raa Toe ‏سا‎ 52 1 ۱ ‏ا لي‎ Or ied ۱۳ C1 Le 83 . 4 Exampley , oe BL B.

صفحه 145:
of Stiffness ET ,۱06ص ۲۵ احرحصها ‎Cracking, Variable E, Creep effect‏ - ‎Geometric and material non linearity‏ - * I, = Gross Moment of Inertia * I,, = Moment of Inertia of rebars V 8, = Effect of creep for sustained loads. = P,,,/P,, Chea Od Pehaior, Dodebry, ‏له سس‎ 0 ۲۲89۳9

صفحه 146:
‎Slenderness procedure for Buildings‏ سا ‎ ‎Vur Vor || Vor ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‏©0000 بو - ۸۱۲ 0 و 3 طط ,موه ‎Ohew Od‏ ‎ ‎ ‎ ‎ ‎

صفحه 147:
۲۲89۳9 0 له سس رف( سم 3 ‎Chea‏

صفحه 148:
ل ‎TOT‏ ‏هت et Cae kn یساس تسا يي ‎ee‏ نك سجن ا ل اك (©6.6 لم امه د ‎eed ed Meee‏ مد مج ©0000 بو - ۸۱۲ مس0 و 4 رطط ,هه ‎Od‏ و۵

صفحه 149:
Some Special Cases

صفحه 150:

Behavior, Modeling and Design of Shear WallFrame Systems Naveed Anwar Asian Center for Engineering Computations and Software, The Basic Issues • Modeling and analysis issues – – – – Transfer of loads to shear walls Modeling of shear walls in 2D Modeling of shear Walls in 3D Interaction of shear-walls with frames • Design and detaining issues – – – – Determination of rebars for flexure Determination of rebars for shear Detailing of rebars near openings and corners Design and detailing of connection between various commonest of cellular shear walls Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall – Common Misconceptions  Due to misleading name “Shear Wall”  The dominant mode of failure is shear  Strength is controlled by shear  Designed is governed primarily by shear  Force distribution can be based on relative stiffness Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall or Column Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall or Frame Shear Wall Shear Wall or Frame ? Shear Wall Behavior, Modeling, Analysis and Design Frame AIT - Thailand ACECOMS Shear Wall and Frame Behavior Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall and Truss Behavior Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall and Frame Shear Wall Behavior Shear Wall Behavior, Modeling, Analysis and Design Frame Behavior AIT - Thailand ACECOMS Shear Wall and Frame Interaction Interaction forces Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Frame and Frame-Shear Wall A-1 A-2 A-3 B-4 Shear Wall Behavior, Modeling, Analysis and Design B-1 B-2 B-3 B-4 AIT - Thailand ACECOMS Shear Wall and Frame Interaction • Frames Deform – Predominantly in a shear mode – Source of lateral resistance is the rigidity of beamcolumn/slab joints • Shear Wall Deform – Essentially in bending mode – Shear deformations are rarely significant – Only very low shear walls with H/W ratio <1 fail in shear – Behave mostly like a slender cantilever – Designed to resist the combined effect of axial, bending and shear Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS The Basic Behavior of ear Walls, Frames and Shear Wall-Fra Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Case Studies: Shear Wall–Frame Interaction For each 10, 20 and 30 story buildings Only Shear Wall ( Total 3 Cases ) Only Frame ( Total 3 Cases ) Only Shear + Frame ( Total 3 Cases ) Total 3x3 = 9 Cases Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Case 1: Shear Wall–Frame Interaction 10 Story Wall cm Wall Thickness = 15 cm Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Case 2: Shear Wall–Frame Interaction 10 Story Frame cm Beam Section = 60 cm x 30 cm Column Section = 50 cm x 50 cm Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Case 3: Shear Wall–Frame Interaction 10 Story Wall and Frame cm Wall Thickness = 15 cm Beam Section = 60 cm x 30 cm Column Section = 50 cm x 50 cm Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Case 4: Shear Wall–Frame Interaction 20 Story Wall cm Wall Thickness = 20 cm Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Case 5: Shear Wall–Frame Interaction 20 Story Frame cm Beam Section = 60 cm x 30 cm Column Section = 75 cm x 75 cm Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Case 6: Shear Wall–Frame Interaction 20 Story Wall and Frame cm Wall Thickness = 20 cm Beam Section = 60 cm x 30 cm Column Section = 75 cm x 75 cm Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Case 7: Shear Wall–Frame Interaction 30 Story Wall cm Wall Thickness = 30 cm Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Case 8: Shear Wall–Frame Interaction 30 Story Frame cm Beam Section = 60 cm x 30 cm Column Section = 100 cm x 100 cm Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Case 9: Shear Wall–Frame Interaction 30 Story Wall and Frame cm Wall Thickness = 30 cm Beam Section = 60 cm x 30 cm Column Section = 100 cm x 100 cm Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall–Frame Interaction To p Fl oor Defl ect i on Com p ari son 400 355.04 350 De fl e ct i o n a t To p Fl o o r (cm) 300 250 Frame+ Wall 200 Frame 158.18 150 Wall 100 50 26.73 15.97 5.14 0 0 10 Shear Wall Behavior, Modeling, Analysis and Design 27.35 12.66 20 Nu mb e r o f St o ry 40.79 20.87 30 40 AIT - Thailand ACECOMS Shear Wall–Frame Interaction St o re y De fl e ct i o n (1 0 St o re y Bu i l d i n g ) 30 De fo rm a t i o n (cm ) 25 20 W all Frame Frame +W all 15 10 5 0 0 2 4 6 8 10 12 St o ry Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall–Frame Interaction St o re y De fl e ct i o n (20 St o re y Bu i l d i n g ) 1 80 1 60 De fl e ct i o n (cm ) 1 40 1 20 Wall Fra m e Fra m e + W a l l 1 00 80 60 40 20 0 0 5 10 15 20 25 St o re y Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall–Frame Interaction St o re y De fl e ct i o n (30 St o re y Bu i l d i n g ) 400 350 De fl e ct i o n (cm ) 300 250 Wall Fra m e Fra m e + W a l l 200 1 50 1 00 50 0 0 5 10 15 20 25 30 35 St o re y Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall–Frame Interaction  Force / Stiffness Stiffness Force /  For the cases considered here (30 story example): Stiffness Frame 200 / 40.79 = 04.90 Stiffness 200 / 355.04 = Force=200 Deflection = 40.79 Wall 00.56 Stiffness Frame + Wall 200 / 12.66 = 15.79 Stiffness Frame +Stiffness Wall 4.90 + 0.56 = 5.46 Stiffness Frame +Stiffness Wall Stiffness Frame + Wall Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Change in Shear Wall Moments Shear Wall Moments for the Coupled System Interaction forces Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Coupling Element Moments Interaction forces Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall-Frame Load Distribution Curves Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Deflected Shape of Shear Wall-Frame Interactive System KhanSbarounis Curves Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Comparison of Shears and Moments in the Core wall 4 Different Layouts for Same Function Requirements 1 total length of building =110 ft 2 10 ft 5 @ 20 = 100 ft 7 1 2 1 total length of building =110 ft 2 in. thick flat plate 10 ft 5 @ 20 = 100 ft 7 Column line 1 2 3 4 5 30 @ 20 = 60 ft in. thick flat plate corewall corewall 12 in 10 in 6 ft 26 ft 6 ft 20 ft 12 in 1 2 26 ft 30 @ 20 = 60 ft corewall corewall 6 CL Column line 1 2 3 4 5 6 CL Type A Type B 1 total length of building =110 ft 2 7 1 2 20 ft corewall corewall 7 in. thick flat plate 6 ft 26 ft 6 ft 12 in 10 in 20 ft 20 ft Column line 1 2 corewall corewall 12 in 10 in 10 ft 5 @ 20 = 100 ft in. thick flat plate 26 ft 20 ft 1 total length of building =110 ft 2 10 ft 5 @ 20 = 100 ft 1 2 3 4 5 Column line 6 18-story high shear walls CL Type C Shear Wall Behavior, Modeling, Analysis and Design 1 2 3 4 18-story high shear walls 5 6 CL Type D AIT - Thailand ACECOMS Comparison of… : Type A CL 1 total length of building =110 ft 2 36 10 ft 5 @ 20 = 100 ft 7 1 2 35 in. thick flat plate 34 33 32 30 @ 20 = 60 ft corewall corewall 31 30 12 in Transverse section 26 ft 6 ft 29 28 8 7.5” thick floor slabs 7 6 8' clear height between floors 5 4 10 ft Column line 1 2 3 4 5 Corewall 3 2 6 1 CL 22 ft Typical Floor Plan- Structure Type A Shear Wall Behavior, Modeling, Analysis and Design 20 ft 30 ft 30 ft AIT - Thailand ACECOMS Comparison of… : Type B CL 1 total length of building =110 ft 2 36 35 10 ft 5 @ 20 = 100 ft 1 7 2 34 in. thick flat plate 33 32 31 29 corewall corewall Transverse section 28 8 7.5” thick floor slabs 7 12 in 6 10 in 8' clear height between floors 26 ft 6 ft 5 4 10 ft 3 Corewall 30 @ 20 = 60 ft 20 ft 30 2 1 22 ft 20 ft 30 ft Column Column line line 1 1 2 3 4 5 30 ft 6 CL Typical Floor Plan- Structure Type B Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Comparison of… : Type C CL 1 total length of building =110 ft 2 36 10 ft 5 @ 20 = 100 ft 7 1 2 35 in. thick flat plate 34 20 ft 30 @ 20 = 60 ft 20 ft 33 32 corewall corewall 31 30 12 in 29 Transverse section 10 in 26 ft 6 ft 10 in 28 8 7.5” thick floor slabs 7 20 ft 6 8' clear height between floors 5 4 10 ft Column Column line line 1 1 2 3 4 5 18-story high shear walls Corewall 3 2 6 1 CL 22 ft Typical Floor Plan- Structure Type C Shear Wall Behavior, Modeling, Analysis and Design 20 ft 30 ft 30 ft AIT - Thailand ACECOMS Comparison of… : Type D CL 1 total length of building =110 ft 2 36 10 ft 5 @ 20 = 100 ft 7 1 2 35 in. thick flat plate 34 20 ft 33 32 corewall corewall 31 30 12 in Transverse section 10 in 26 ft 6 ft 29 28 8 7.5” thick floor slabs 7 20 ft 6 8' clear height between floors 5 4 10 ft Column line 1 2 3 4 5 18-story high shear walls Corewall 3 2 6 1 CL 22 ft Typical Floor Plan- Structure Type D Shear Wall Behavior, Modeling, Analysis and Design 20 ft 30 ft 30 ft AIT - Thailand ACECOMS Comparison of Shears and Moments in the Core wall Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Wall-Frame Interaction: Key Conclusions – The shear wall deform predominantly in bending mode – The common assumptions to neglect the frames in lateral load resistance can lead to grossly erroneous results – Consideration of shear wall-frame interaction leads to a more economic design – The shear walls should be designed to resist the combined effect of axial, bending and shear – Layout of the shear walls in plan in very important, both for vertical as well as gravity load ACECOMS Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand Basic Types of Shear Walls Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Basic Types of Shear Walls Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Basic Modeling Options for Shear Walls Modeling of Walls using 1D Elements Beam elements with rigid ends Simple beam elements Beam elements in “Truss Model” H2 H1 t t L Shear Wall Behavior, Modeling, Analysis and Design txh L L AIT - Thailand ACECOMS Frame Model for Planer Walls H t B • Specially Suitable when H/B is more than 5 • The shear wall is represented by a column of section “B x t” • The beam up to the edge of the wall is modeled as normal beam • The “column” is connected to beam by rigid zones or very large crosssection Rigid Zones Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Frame Models for Cellular Walls t H B 2t H t B Shear Wall Behavior, Modeling, Analysis and Design • Difficult to extend the concept to Non-planer walls • Core Wall must be converted to “equivalent” column and appropriate “rigid” elements • Can be used in 2D analysis but more complicated for 3D analysis • After the core wall is converted to planer wall, the simplified procedure cab used for modeling AIT - Thailand ACECOMS Modeling Walls using 2D Elements • Walls are subjected to in-plane deformations so 2D elements that have transnational DOF need to be used • A coarse mesh can be used to capture the overall stiffness and deformation of the wall • A fine mesh should be used to capture in-plane bending or curvature • General Shell Element or Membrane Elements can be used to model Shear Walls Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Modeling Walls Using Membrane The Incomplete Membrane Element Nodes: DOFs: 4 2 DOFs /Node Ux and Uy 2-Translation Dimension: 2 dimension element Shape: Regular / Irregular Properties: Modulus of Elasticity(E), Poisson ratio(v), Thickness( t ) This “Incomplete” Panel or Membrane Element does not connect with Beams completely and rotation DOF of beams and the ends are “Orphaned” Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Modeling Walls using Shell Elements The Complete Membrane Element Nodes: DOFs: and Rz 4 3 DOFs /Node Ux and Uy 2 Translation, 1 rotation R3 Dimension: 2 dimension element Shape: U2 No d e 4 No d e 3 U1 Regular / Irregular 3 Properties: Modulus of Elasticity(E), Poisson ratio(v), Thickness( t ) U2 U1 2 1 R3 U2 No d e 1 R3 U2 No d e 2 U1 U1 Memb ra n e Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Using Incomplete Membrane Elements Multiple elements greater accuracy in determination of stress distribution and allow easy modeling of openings Using Incomplete Membrane only Using with Beams and or Columns are Required (No Moment continuity with Beams) (Full Moment continuity with Beams and Columns) Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Using Complete Membrane Elements Multiple elements greater accuracy in determination of stress distribution and allow easy modeling of openings Using Complete Membrane only (Moment continuity with Beams automatically provided) Shear Wall Behavior, Modeling, Analysis and Design Using with Beams, Columns is NOT Required (Full Moment continuity with Beams and Columns) AIT - Thailand ACECOMS Connecting Walls to Slab “Zipper” In general the mesh in the slab should match with mesh in the wall to establish connection Shear Wall Behavior, Modeling, Analysis and Design Some software automatically establishes connectivity by using constraints or “Zipper” elements AIT - Thailand ACECOMS Using Trusses to Model Shear Walls • The behavior of shear walls can be closely approximated by truss models: – The vertical elements provide the axial-flexural resistance – The diagonal elements provide the shear resistance • Truss models are derived from the “strut-tie” concepts • This model represents the “cracked” state of the wall where all tension is taken by ties and compression by concrete Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Truss Model for Shear Walls 10 Comparing Deformation and Deflections of Shell Model with Truss Model 5 2 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Truss Model for Shear Walls 10 Comparing Deformation and Deflections of Shell Model with Truss Model 5 2 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Truss Models for Shear Walls 10 Comparing Axial Stress and Axial Force Patterns 5 2 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Truss Models for Shear Walls 10 5 2 Uniaxial Shear Wall Behavior, Modeling, Analysis and Design Biaxial AIT - Thailand ACECOMS How to Construct Truss Models txt C t x 2t B • For the purpose of analysis, assume the main truss layout based on wall width and floor levels • Initial member sizes can be estimated as t x 2t for main axial members and t x t for diagonal members • Use frame elements to model the truss. It is not necessary to use truss elements • Generally single diagonal is sufficient for modeling but double diagonal may be used for easier interpretation of results • The floor beams and slabs can be connected directly to truss elements t Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Openings in Shear Walls Very Small Openings may not alter wall behavior Medium Openings may convert shear wall to Pier and Spandrel System Beam Spandrel Wall Shear Wall Behavior, Modeling, Analysis and Design Very Large Openings may convert the Wall to Frame Column Pier Pier AIT - Thailand ACECOMS Openings in Shear Walls Cellular 5 2 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Openings in Shear Walls - Planer Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Modeling Walls with Opening Plate-Shell Model Shear Wall Behavior, Modeling, Analysis and Design Rigid Frame Model Truss Model AIT - Thailand ACECOMS Frame Model of Shear Walls A: Shear Wall withLineLoads B: FiniteElementModel Ri g i d Zo n es Bea ms 3DOF pe r rigi d zon e Co l u mn s C: DefineBeams &Columns D: Beam-ColumnModel Based on Concept proposed by E.L. Wilson Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Using Beam-Column to Model Shear Walls – 4-Node plane element may not accurately capture the linear bending, because constant shear distribution is assumed in formulation but actually shear stress distribution is parabolic – Since the basic philosophy of RC design is based on cracked sections, it is not possible to use the finite elements results directly for design – Very simple model (beam-column) which can also captures the behavior of the structure, The results can be used directly to design the concrete elements. Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design –Meshing • Shell Deformations: – Three types of deformation that a single shell element could experience – A single shell element in the program captures shear and axial deformations well. – But a single shell element is unable to capture bending deformation. Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Modeling Shear Walls Using Shell Elements A-1 Plates with Columns and Beams A-2 Plates with Beams Shear Wall Behavior, Modeling, Analysis and Design A-3 Plates with Columns A-4 Plates Only AIT - Thailand ACECOMS Modeling Shear Walls Using Beam Elements B-1 Single Bracing B-2 Double Bracing Shear Wall Behavior, Modeling, Analysis and Design B-3 Column with Rigid Zones B-4 Columns with Flexible Zones AIT - Thailand ACECOMS Comparison of Behavior A-1 A-2 A-3 B-4 Shear Wall Behavior, Modeling, Analysis and Design B-1 B-2 B-3 B-4 AIT - Thailand ACECOMS Comparison of Behavior (5 Floors) B4 A1 B1 A1 B1 B4 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Comparison of Behavior (15 Floors) B4 A1 B1 A1 B1 B4 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Comparison of Behavior (25 Floors) B4 A 1 B1 A1 B1 B4 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Effect of Shear Wall Location Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Modeling of Shear Walls In ETABS Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Using ETABS Special Considerations/Concepts: – Zoning • • • – Pier Spandrel and Boundary Zone Labeling • • – Pier Spandrel Section Types • • • Simplified Section (C, T or Linear) Uniform reinforcing section General Sections Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design –Meshing • Wall Meshing and Load Transfer: – – – – Appropriate Meshing and labeling of Shear Walls is the key to proper modeling and design of walls No automatic meshing is available for walls (only manual) Loads are only transferred to walls at the corner points of the area objects that make up the wall Generally the Membrane or Shell type Elements should be used to model walls Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design –Meshing Wall Meshing: – Piers and spandrels where bending deformations are significant (slender piers and spandrels), need to mesh the pier or spandrel into several elements – If the aspect ratio of a pier or spandrel one shell element is worse than 3 to 1, consider additional meshing of the element to adequately capture the bending deformation Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Pier Zones Pier Zone Labeling (Naming/Grouping) – Pier labels are assigned to vertical area objects (walls) and to vertical line objects (columns) – Objects that are associated with the same story level and have the same pier label are considered to be part of the same pier. – Must assign a pier element a label before you can get output forces for the element or before you can design the element. Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Pier Zones – A single wall pier cannot extend over multiple stories – Wall pier forces are output at the top and bottom of wall pier elements – Wall pier design is only performed at stations located at the top and bottom of wall pier elements. Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Pier Zones Piers Labeling Examples Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Pier Zones General Comments on Case d: – – – – All of the area objects given the same label P1 Design is performed across the entire wall at each story level Wall forces would be provided for the entire wall at each story level Combined reinforcement is reported at the top and bottom of each floor (3-5 area objects) Section for Design at II Floor Top Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Pier Zones General Comments on Case a: – – – – – – – Common way to label piers At the upper level, Pier P1 is defined to extend all the way across the wall above the openings. Pier P2 makes up the wall pier to the left of the door opening. Pier P3 occurs between the door and window openings. Pier P4 occurs between the window opening and the edge of the wall. Pier P5 occurs below the window opening between the door and the edge of the wall. A similar labeling of piers occurs at the lower level. Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Pier Zones General Comments on Case a (Common Way): – – – – – – At the upper level, Pier P1 is defined to extend all the way across the wall above the openings. Pier P2 makes up the wall pier to the left of the door opening. Pier P3 occurs between the door and window openings. Pier P4 occurs between the window opening and the edge of the wall. Pier P5 occurs below the window opening between the door and the edge of the wall. A similar labeling of piers occurs at the lower level. Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Pier Zones General Comments on Case a (Common Way): Design pier –1 Design pier –2 Design pier –3 Sections Design pier –4 Output for Each Pier Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Spandrel Zones Spandrel Zone Labeling (Naming/Grouping) – Spandrel labels are assigned to vertical area objects (walls) and to horizontal line objects (beams) – Unlike pier elements, a single wall spandrel element can be made up of objects from two (or more) adjacent story levels – Must assign a spandrel element a label before you can get output forces for the element or before you can design the element Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Pier Zones Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Spandrel Zones Spandrels or Headers – Wall spandrel forces are output at the left and right ends of wall spandrel Elements – Wall spandrel design is only performed at stations located at the left and right ends of wall spandrel elements – Multiple wall spandrel labels cannot be assigned to a single area object. Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Spandrel Zones Examples: Spandrel Labeling Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Concrete Shear Wall Design • Fully integrated wall pier and spandrel design • ACI, UBC and Canadian Codes • Design for static and dynamic loads • Automatic integration of forces for piers and spandrel Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design • Design based on : – Equilibrium Conditions – Strain Compatibility Principle – Linear Strain Variation Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Interaction Surface for Shear Walls P My Mx Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Concrete Shear Wall Design 2D wall pier design and boundary-member checks 2D wall spandrel design 3D wall pier check for provided reinforcement Graphical Section Designer for concrete rebar location • Graphical display of reinforcement and stress ratios • Interactive design and review • Summary and detailed reports including database formats • • • • Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall - Typical Design Process 1. While modeling define Shear Wall elements 2. Choose the Shear Wall design code and review other related preferences and revise them if necessary 3. Assign pier and spandrel labels 3. Run the building analysis 4. Assign overwrites 5. Select Design Combos 6. Start Designing Walls Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall - Typical Design Process 7. View Design Input and Output Information 8. Design the Member Interactively 9. Print Design Report 10.Change Design Section if Required 11. Re-run Design and Re-analyze if needed 12. Repeat the Above Cycle Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Output Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Output Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Output Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Wall Design – Output Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS The Basic Issues • What is a Shear Wall? • Modeling and analysis issues – – – – Transfer of loads to shear walls Modeling of shear walls in 2D Modeling of shear Walls in 3D Interaction of shear-walls with frames • Design and detaining issues – – – – Determination of rebars for flexure Determination of rebars for shear Detailing of rebars near openings and corners Design and detailing of connection between various components of cellular shear walls Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Avoid Eccentricity in Plan Or Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Reduce In-plane Bending in Floor Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Vertical Irregularity Expansio n Joint No Shear Walls Shear Wall Behavior, Modeling, Analysis and Design Balanced Shear Walls at All Levels Using Expansion Joints to eliminate some walls AIT - Thailand ACECOMS Using Efficient Building Plan Shape Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Design of Shear Walls Axial Stresses in Planer Walls 10 5 2 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Axial Stresses in Cellular Walls 10 Uniaxial Bending 5 2 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Axial Stresses in Cellular Walls 10 Biaxial Bending 5 2 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Getting Result from Frame Model Design actions (P, Mx, My and V) are obtained directly P M P V Shear Wall Behavior, Modeling, Analysis and Design Vy Vx Mx My AIT - Thailand ACECOMS Getting Results from Truss Model P T  C  D sin( ) M Txt  Cxc  D sin( )xd V  D cos( ) D T M xd xt Tension Member P C V xc Compression Member Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Getting Results From Shell Model CL of wall Fi  Ai fi n P  Fi i 1 n P A A M V M  Fi xi i 1 n V  Ai vi i 1 t f5 x1 f4 T f3 f2 C f1 x1 Shear Wall Behavior, Modeling, Analysis and Design f1, f2, …..fn are the nodal stresses at section A-A , obtained from analysis AIT - Thailand ACECOMS Interaction Curves - Uniaxial The curve is generated by varying the neutral axis depth Un-safe Nb   Nnx   fc( )da  fsiAsi i 1 A  Nb   Mny   fc( )da.dz  fsiAsidzi i 1 zA  Shear Wall Behavior, Modeling, Analysis and Design Safe AIT - Thailand ACECOMS Interaction Surface - Biaxial The surface is generated by changing Angle and Depth of Neutral Axis Un-safe Safe  1 Nz 1  1  x, ydxdy... x y  1 Mx  2   1  1 My  3   1 1 2  n  i Ai i (x, y) ...  1 n 1  x, ydxdy. y ...     i x y 2  x, ydxdy. x ... x y Shear Wall Behavior, Modeling, Analysis and Design 1 2 1 n  i 1  Ai i (x, y) yi ...   Ai i (x, y) xi ...  AIT - Thailand ACECOMS Interaction Surface and Curves Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Narrow Planner Walls The capacity is almost completely un-axial Moment capacity can be increased by providing Rebars at the corners Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Cellular Wall – No Opening The capacity is almost completely biaxial Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Single Cell Walls Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Double Cell Walls Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Designing as Axial Zones Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Axial Zone Model – Planer Wall Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Axial Zones for Box Wall Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Design Spandre l Pier Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Shear Design of Pier • Determine Concrete shear capacity, Vc • Check if Vc exceeds the limit, if it does, section needs to be revised • Determine steel Rebars for Vs=V-Vc • Check additional steel for seismic requirements Shear Wall Behavior, Modeling, Analysis and Design Lp tp AIT - Thailand ACECOMS ACI Equations for Pier Design Basic Concrete Shear Capacity Vc 3.3RLW Pu 0.8Lp  fctp 0.8Lp  4Lp Concrete not to Exceed the limit    Vc  0.6RLW     fc  Lp  1.25RLW  fc  0.2 M  L Abs u   p 2  Vu  Pu    Lptp    tp 0.8Lp     Area of Steel Computed as AbsVu   Vc  Av  fys0.8Lp  Shear Wall Behavior, Modeling, Analysis and Design AbsVu  10RLW fctp 0.8Lp   AIT - Thailand ACECOMS Shear Design for Spandrel • Determine Concrete shear capacity, Vc • Check if Vc exceeds the limit, if it does, section needs to be revised • Determine steel Rebars for Vs=V-Vc • Check additional steel for seismic requirements hs Ls Elevation ts dr top c a hs dr bot Section Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS ACI Equations for Spandrel Design Basic Concrete Shear Capacity Vc 2RLW fctsds Concrete not to Exceed the limit V Vs Vn  Vc  u  V c  Area of Steel Computed as Av  Vs f ysds Vs 8RLW fctsds Check for minimum steel and spacing etc. Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS ACI Equations for Spandrel Design Ls 5 When ds When When and Ls  5 and ds 2 Ls 5 ds Vu  0.5Vc  Vu 0.5Vc  50ts fys Ahmin 0 Avmin  Ahmin 0 Check Vu 2  Ls     10  RLW fctsds  3 ds  Shear Wall Behavior, Modeling, Analysis and Design Avmin  Avmin 0.0015 ts Ahmin 0.0025 ts AIT - Thailand ACECOMS Notations for Shear Design Ls = Length of Spandrel ts = Thickness of Spandrel dr= topDistance from top of spandrel to the centroid of top reinforcing d= Distance from bottom of spandrel to the centroid of bottom reinforcing r bot hs RLW = Total depth of spandrel = Shear reduction factor as specified in the concrete material properties for light weight concrete. ds = Effective depth of spandrel Vs= Portion of Shear force in spandrel carried by reinforcing steel Vc = Portion of Shear force in spandrel carried by concrete Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Wall Section • Place more reinforcement at the ends and distribute the remaining in the middle portion • Confine the Rebars at the end for improved ductility and increased moment capacity Option -1 Option -2 Option -3 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Effect of Rebar Layout Moment Capacity for 1% Rebars a) Uniform Distribution Max M= 380 b) Concentrated Bars Nearly 25% increase for same steel Shear Wall Behavior, Modeling, Analysis and Design Max M= 475 AIT - Thailand ACECOMS Wall Section • Place more reinforcement at the corners and distribute the remaining in the middle portion • Confine the Rebars at the corners for improved ductility and increased moment capacity • Provide U-Bars at the corners for easier construction and improved laps Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Effect of Rebar Layout Moment Capacity for 1% Rebars a) Uniform Distribution Max M= 16500 b) Concentrated Bars Max M= 19600 Nearly 20% increase for same steel Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Rebar Detailing For Openings Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Slendern ess of Columns Complexity in the Column Design Loading Load Complexity PMx My PMx P S rt ho ng Lo L V. on Shape Shape Complexity Most Simple Problem g SlendernessLength Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS What is Slenderness Effect Moment Amplification e P P Capacity Reductio n I e C P f(Mc) II C M I. Mc = P.e II : Mc = P(e +  Short Column Long Column Shear Wall Behavior, Modeling, Analysis and Design Column Capacity (P-M) AIT - Thailand ACECOMS Factors Effecting Slenderness Effect • “Effective” Length – Actual Length – End Framing and Boundary Conditions – Lateral Bracing Conditions • “Effective” Stiffness – – – – Cross-sections Dimensions and Proportions Reinforcement amount and Distribution Modulus of Elasticity of Concrete and Steel Creep and Sustained Loads • Loads – Axial Load – End Moments and Moments along the Length Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS ACI Moment Magnification Summary Final Design Momen t Larger Non- Sway Moment Larger Sway Moment Mm Mns ns  Ms s Cm Pu  ns  1 Cm 0.6 0.4 M1 0.4 M2 0.75PC  (EI) PC  (KlU )2 Shear Wall Behavior, Modeling, Analysis and Design 2 a)  s  1 1 1.0  Pu 0 Vulc If  s  1.5 then 1 1  Pu 1 0.75 Pc b)  s  AIT - Thailand ACECOMS What is Sway … – Sway is dependent upon the structural configuration as well as type of loading Non Sway Sway May be Sway For Non-sway Frames (Very rigid or braced) – – For Sway Frames (Open frames, not braced, Depends on loads also)  s 1.0  ns 1.0  s 1.0  ns 1.0 Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS … What is Sway • Appreciable relative moment of two ends of column Sway 0  • T   B T lc Sway Limits lc B a) EIBracingwalls  6EIColumns PU  0 b) E  0.05 VU lC Mm c)  1.05 M Shear Wall Behavior, Modeling, Analysis and Design Frame considered as “Non-Sway” AIT - Thailand ACECOMS … More on Sway • Braced Column (Non-Sway) Most building columns may be considered “Non-Sway” for gravity loads • More than 40% of columns in buildings are “Non-Sway” for lateral loads • Moment Magnification for “Sway” case is more significant, more complicated and more important • • Unbraced Column (Sway) Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Calculation of ns (Non-Sway)  ns  1 Cm Pu 0.75PC Moment curvature Coefficient Applied column load Critical buckling load  (EI) PC  2 (KlU ) 2 Flexural Stiffness Effective Length Factor Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS The Cm Factor The Moment and Stress Amplification Factors are derived on the basis of pin-ended columns with single moment curvature. (Cm = 1.0) For other Moment Distribution, the correction factor Cm needs to be computed to modify the stress amplification. Shear Behavior, Analysis and Design CWall 0.4 Modeling, to 1.0 m = M1 Cm 0.6 0.4 0.4 M2 M1 M1 M2 M2 M1/M2 Positive M1/M2 Negative M1 is the smaller End Moment M2 is the larger End AIT - Thailand ACECOMS More about Cm Factor M1 M2 M2 M1 M1= -M M2 = M M1  1 M2 Cm = 1.0 M1 = 0 M2 = M M1 0 M2 Cm = 0.6 Shear Wall Behavior, Modeling, Analysis and Design M2 M1 M1 =M M2 = M M1 1 M2 Cm = 0.2 M1 M2 M1 =0 M2 = M M1 0 M2 Cm = 0.6 AIT - Thailand ACECOMS Effective Length Factor, K • • • • 0.5 To account for “Axial-Flexural Buckling” Indicates the “total bent” length of column between inflection points Can vary from 0.5 to Infinity Most common range 0.75 to 2.0 1.0 Shear Wall Behavior, Modeling, Analysis and Design 0.5 - 1.0 2.0 1.0 -  AIT - Thailand ACECOMS … Determination of K • Members Part of Framed Structure Unbraced Frames 20 Gm K 1 Gm 20 K 0.9 (1Gm) for Gm 2 K 0.7  0.05(GT  GB ) 1.0 k 0.85 0.05Gm 1.0 Braced Frames (smaller of)  (EI / LC ) G  (EI / L) K G for Gm  2 Columns Beams G Increase , K Increases Shear Wall Behavior, Modeling, Analysis and Design GT Top End GB BottomEnd Gm Minimum of GT and GB AIT - Thailand ACECOMS … Determination of K • Isolated Members Bottom End Top End Fix Pin Free Fix 0.5 0.8 2.0 Pin 0.8 1.0 Un s t a b l e Free 2.0 Un s t a b l e Un s t a b l e Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS … More about Factor K  (EI / lC )   (EI / l) K  Columns Beams  Increase , K Increases •How about “I” Gross? Cracked? Effective? •ACI Rules B1 C2 B2 Beams I = 0.35 Ig, Column I = 0.7Ig C1 B3 E(IC1  I C2) Example  T  E(IB1  IB2 ) Lc B4 C3 E for column and beams may be different Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Determination of Stiffness EI EI  Ab 0.2EC I g  EsIse or  1  d 0.4EC I g h yb 1  d • Attempt to include, – Cracking, Variable E, Creep effect b – Geometric and material non linearity • Ig = Gross Moment of Inertia • Ise = Moment of Inertia of rebars   = Effect of creep for sustained loads. = P /P d ud u Shear Wall Behavior, Modeling, Analysis and Design Ig  bh3 12 Ise  Ab. yb2 AIT - Thailand ACECOMS Slenderness procedure for Buildings Q  PU  0 VU lC  PU PU1  PU 2  PU 3...... T PU1 PU2 PU3 PU4 lC VU1 VU1 VU1  0  T   B VU1 B VU VU1  VU 2  VU 3....... average  lC Clearstoreyheight If Q 0.05 : Non swaycase Q  0.05 : Sway Case Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS BS Moment Magnification • Basic Equation for Slender Columns Mm Mi  Nau Initial Moment form elastic analysis Shear Wall Behavior, Modeling, Analysis and Design Madd, Additional moment due to deflection AIT - Thailand ACECOMS Calculation of Deflection au Load correction factor au  a Kh Column Dimension along deflection Length Correction Factor Applied column load Nuz  N K 1 Nuz  Nbal Axial capacity at balanced conditions Axial Capacity for M = 0 Nuz 0.45fcuAc  0.95Asc fy a  1  le    2000 b  2 Effective Length = lo (From Table 3.21 and 3.22) Smaller dimension Shear Wall Behavior, Modeling, Analysis and Design AIT - Thailand ACECOMS Some Special Cases M V Shear Wall Behavior, Modeling, Analysis and Design P M AIT - Thailand ACECOMS Some Special Cases P V Soft Hard (e) P L1 d L L1 h1 L1 h1 Le = ? h2 L2 (a) L 2 (b) Shear Wall Behavior, Modeling, Analysis and Design (c) (d) AIT - Thailand ACECOMS

51,000 تومان