صفحه 1:
Ohkopter 00: Ona @adeie cad Dictary
صفحه 2:
Ohkapter 06: Oata )19 جه جاع براه Dietary
Orvisica Guppont Gpstews
Orta Boripsts cord OLOP
Orta Oorekrustery
cts Dreier
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wo ©Sbervehnts, Cork ced Cnakershe
صفحه 3:
Qeveiva Gupport Gysews
BH تما لت تال مه با و dere, often based ot
و سس سین لیس ربا سوت مس eee,
۲ تس وا سس
© Dhol tees otk?
۶ اه نا مج سس با
۶ Do whew تساه ام و
2 Bere ire eB da ved Bre somber سس
۰ لجسي سییر با یب
۰ Geet (ee eerie)
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wo ©Sbervehnts, Cork ced Cnakershe
صفحه 4:
+ Osvisewe-Ouppori Oysiews: Overview
© Oats ander tobe oe stoplPied by spevidized took ond GOL exter
© اه مس
۱ ۳ ی produ category oad رح موی whol were the totd sales in the
fest quarter ood how نت وی وا ول the secre quarter host pear
© Oe بو تساه ewk prixket ouewery unl puck einer oa ery
Bl Grteted omnes packenes (rcp, | G++) ma be terPared wih dacboses
۱ Piekd, but cet covered kere
۲ مت نو seeks to discover hoowiedye cuiccwvaticdly fa the Para oF statistical rues
wed puters Prow horye لول
BO dete werchouse uchives iPorwativa quhered Prow wulipe scurves, ocd stores
header o UaPted srkeuwa, ofc sine site.
© Seoporteat Por horge bustuesses thot yecerute data Proow wulipke: diisicos,
possibly ot cattigke sites
© Dota way osy be purchosed extercrahy
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO we ©Sbervehnts, Cork ced Cnakershe
صفحه 5:
+ Octa Baddow rd OLOP
Bl Ocke Busbard Provesstay (LBP)
© وبسح eerie oP det, cewice chic iy be svercrartzed ord viewed it
dbRerect wove سارت لس مات مه deka)
© ete tot coo be wodeled us واه حول oad تا مت are
مت لین لصا +
* Orwur wives
۱ ی suwe ihe
١ pes be operated مب
ee. the uinbuie avaber of the subs rekon
۶ ای م0
سوه ج) جاتو سس ات من ول با بقل ۱
tere) oe viewed
١ دج the itbutes tew_onre, ool, ocd size oP he sake rektic
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wo ©Sbervehnts, Cork ced Cnakershe
صفحه 6:
oP sules by iteco-cawe aad مسولیك یمن
او
و Dhe tobe cbove ib on exnople oP a oross-kihion (vroe-tab), dbo rePerred tow ل
سوم
the row headers توا اه مرو با Ocke Por oe of
Osttes Por carter devecsica uttibute Porc the ooh headers
6 من لاه ات موف
]9 حلاصت امس لهك ذا دص one (aerexies oP) the vokes oP the
ما اه مس speoPy the vel Ez
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wo ©Sbervehnts, Cork ced Cnakershe
صفحه 7:
number
8
35
10
53
20
10
color
dark
pastel
white
all
dark
pastel
white
all
dark
pastel
white
all
dark
pastel
white
all
dark
pastel
white
item-name
skirt
skirt
skirt
skirt
dress
dress
dress
dress
shirt
shirt
shirt
shirt
pant
pant
pant
pant
all
all
all
all
Bl Cross-bs oom be represeded جه
ار
© Oe we te سل dis werd
represen
© Tre GQL:0999 stocdard artudly,
dues to place oP di despite أن عدص
oP size ih regudar oul vues
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO
صفحه 8:
و0 +
۱
© Ouakae o deem; we vow ٩ ساسا
1 صمت ولد وير be word we views oa a chia abe
28 48 42) small
77
‘medium
53 | 35 | 49 | 27 | 164 large و
skirt dress. shirts pant لله
item name
wo ©Sbervchnts, Cork ced Cnakershes ۷00,06 بط 9 - مومسم 6 ی
صفحه 9:
۲ یوم و و لح سول با موه پم ts cohed
© Gheteg! oreutoy 0 orvss-tob Por Fixed voles رای
© Gowetves riled روط porimked) wheo voles Por سود سول ore
Pred.
۲ Roky: woviey row Peer-grocuoniy data وی و صا yrocukiriy
© Ord dws: Che opposite operaio - thot oP ما لوصو مر وی
fo ول راوس
wo ©Sbervehnts, Cork ced Cnakershe 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 10:
مجه يان +
© مرا on dkvewios utributes: lets dveusioes to be viewed of dPPercct
levels oP detail
بجفمل ,رو و عمط وا وروی وا used با مت توا Date مس با روج *
هجوت ای ناه clay
Region
Day of week
Country
Hour of day Date
State
DateTime City
a) Time Hierarchy b) Location Hierarchy
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO 16.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 11:
Cross له )0 Wierachy
total
© Oress-tube von be eusiy extecded ty deol wily hierarchies
| Co del dowe or rollup ooo hierarchy
dark
8
20
28
20
34
62
5-55
item-name
skirt
dress
subtotal
pants
shirt
subtotal
category
womenswear
menswear
total
4
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO
صفحه 12:
ههام1 ۵0)ران)
19 Dhe ورد 006 وه werd walithrewinnd ares و وا رم dota
ای بت با واه سوه لجی ,لت OLOP (DOL@P) systews.
۱
سس (60۵0) هر
7 ۱
(LOL) 0را0 تیاب اطه هط ماس د دز سميج جات can!
sees.
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO 16.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 13:
+ OVOP ‘kopeweadion (Ovw.)
B Coty OLOP مومس موه all possible oqgreyaies ta arder ty provide valor
resp
© G pace onl Roe requires Por doin sv oot be very hits
١ 6۳ مج سل by
لمح مس اه هلوت موی وی رم وا ولو ©
وروی امس ان جم وو
)مه سوه مت تم cobr) )مه سوه و Coa >
cobr, size) بجو
~ or dl but a Pew “oederowposuble” oer eyaies suck us wedi
- جا cheaper thoa مج ft Pro serail
© Geverd opiketzaiogs avoluble Por cecoputeny culiple ogre gates
© ون prep uie ocgrecnie oo (ewan, rel) Proc وه و ot
(ieu-anre, cob, siz)
© Con co wpuie agrequies va (jiew-cnre, ober, size),
برع
oP the base skis
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO 16.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 14:
6 ۵ لس +
۲ ۱ اه موی وه مه و rou by's oo every subset of he spectied
اه
7
(صم )مه مه له روموت موی
تست میم
eng by )له cobr, size)
“Dh cox tes the vara of eft di Rerect rman of the sabe retin!
{ (iewe-nnre, cobr, size), (tener, cbr),
) size), (cobr, stzr),
) ,سمس (cbr),
(riz), QO}
ukere () dewies oa ey group by bet.
Bl Por ewk yoke, the صلب انج صا فيه الحم
Por otrbutes oot بوسحم جا جا سسب
©Sbervehnts, Cork ced Cnakershe 16.00 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 15:
+ @rteaded Bqgrequios (Oow.)
BB Rekitoud represeciica oP preset thot we saw porter, but was cule pce oP dl, oo
be computed by
oped on an cate جح حت موی مخ با
voke represeoteg ol, gad retures (D i dl her pases. للم و Rete CP he vole ©
poupha 127) wr stze-Pkry,
Prow subs
wpa by nube(tewonre, rob, star)
© Coase he Pucetva devode() ا he sebet chur توا نا
sunk walls by صلم ه suck ow
© Coy. replace few-oe ta First query by
(ست- موس الط 6, ‘ol’, secre)
سا0 لح 0 لا سواه 1 موم 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 16:
@xteaded Oqgequioa (Ovd.)
BV. eh وه مت و ی every prefix of speviied bet oF اس
B Gx.
العامة امعد سج اه وت سوه
Brow subs
cob, size) برط جحو
مج و اه منت حطس
[() ,سس له ,تست( ند میس ]
0
hierarchy.
caery) dues be ooteceny of ack سروس BG, sxppoee tbe
tow. Thea
axa ctor) ا 0
beaker bern = ۳[
pow by eke (cari, ter~ornre)
مه روا لو سوت a Kerorchiod sucmmary by وف اون
©Sbervehnts, Cork ced Cnakershe 16.00 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 17:
+ @rteaded Bqgrequios (Oow.)
وصجات بجا ضحمب side د وا جوف cua be اه لت وان اب(
vet of row by bets, orves procket of sete ver overdl vet oP ی Bock ©
عبط نوا مج
هم
velo ewe, oobr, size, oeo(aurber)
Brow sake
ow by rohip(iew-cnre), rohup(oobr, viz)
وم سا وس
X {(evbor, stze), (ober), ()} })( مها
roby, size), (tew-nnre, cob), (tew~cnnre), صصص ) ) -
(cbr, size), (ovr), ()}
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wae ©Sbervehnts, Cork ced Cnakershe
صفحه 18:
تج
تمه بو له وه موی وا سل با رت ۲
of pork ote, وت بط لا (عی لاله مات مرا ٩
۳ stickorid, rack ) puer (order by carte den) we oro
ویلبد موم(
© centro order by clus is ceeded i yet thew tn sorted order
تمه مساو rads ( ) per (order by worker dewey) er sro
او یله مب(
order by s-rodhk
۲ Rochieg way ewe yups! e.g. PC stdeus hove the save top work, bots که هو
od the ص عادص فص ©
© ewe لو does ot we cpp, 9 wet سا وس
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO 16.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 19:
Radkiaq (Ovd.)
BE Rocking cou be doce within portion oP he dats.
“Cia he rents of ليخد thie eck seviiva.”
web sida, socio,
racks ( ) pver (partion by serie order by works deo)
ی وه
وطاع اهاط مج
where sidebars. sida! = stideutsertiza.stickubtd
میج شید با لو
و سل( ها chases ou poour ina sti selert ohne
BE Rachie iy doer oir opp دمصي عسات بها وححه
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO موم
صفحه 20:
+ Radios (Ort)
۲ Ober rechten Ricci!
© perved_ rank (wihis partis, P partiivciy ts doc)
۶ سطلمم) بط وی dotrbutins)
۱ wil: prevediery voles
۶ )ام بر it preseure oP duphoctes)
۲ ©QL11I999 perwis the wer ty speck y mule Prot or call kot
اسلا ماو
اج وه by works deer ule boot) طس) وه ( ) مر
0 يمتنا
سا0 لح 0 لا سواه 1 همومه 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 21:
(مسم) مسج +
و the Posting ctk(q) tohes the tuples رم he و مه مرف و لت ل
اه موه طب میاه ند ما حارط لوط اتمه با دا مور
OP tuples.
نوع هم
mno(sukry) سا سیر
Prow (
vfle(S) per (order by sutey) ver forte رمك - welt
+ جه Prow euphyer)
جاده برط جيجه
©Sbervehnts, Cork ced Cnakershe 16.00 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 22:
Otedowiey
© Osed to sooth out rendow او
B Gq: woes average: “Gived sues voles Por euch date, colultte Por purl cate the
wenn OF the odes vo thot doy, the previous doy, ocd the cent day”
۴ Oknbw epevPraios OGL:
© Ctearehtics sabe (dae, he)
sua (vake) pver رح ماود
(order by date betters rows (| prevedrg cod (I Polowtcry)
Prow subs
۲ ساس سمرت و اه ام
© betwee اه لت پم ای من
© rows honed proved
۶ rene betwee 1 precede od cured row
» Obs wih uckes betwera cured row vos 00 to mares che
© لس مج 10 day precedes
۱ 0 صم مه اه
سا0 لح 0 لا سواه 1 66م 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 23:
+ Oratory (Ovct.)
B® Ooo de uted wie وم لات
BG, Crea a rekion neice (arcou-onrber, daeckoe, vk), where
inher fe postive Por سره له امس و Por a wid
"لمجوجه جما مم جماصتحص موی له موه موی oP ولا لت لب" و
لصو همست بای
رف سب
] تانج" امجععه
peer by dhe
rows \cboented preven)
لا و
Pre renin
order by cermuctouniber, chaitete
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO سا0 لح 0 لا سواه 1 موم
صفحه 24:
Oda Dershouwiny
© Oct بسن رل موی بان بت اه موه historicd data
۲ ون devisiva wobtoy requires ال و view of ol بل امش
fockadkary historicd data
BO daa workoee & oreprstory (achive) of Poneaion qahered Brow
و ون ,ماه ای و یی له موه لت ote
۱ perwiis sity oP historicd treads:
© GhPs deveivg support query bod away Prow trowsurtion provessicr,
مدرد
woe ©Sbervehnts, Cork ced Cnakershe 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 25:
query and
analysis tools
data warehouse
data source n
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO
صفحه 26:
4 مس ere
© Qheo ocd how سمل من سا
© Gowree drives achievture: data sources trrswil ww iPprarciza i
worchawe, ether ovaicwwsl or pericdirdly (e.g. of cit!)
© Orsitcatcn drives orvhiierture! warehouse periodicdly سوه همه
iPorwativa Pow dota sources
© جامد )ا warehouse exuny spochrodzed wil data sources (e.x. usiery fue
a as ane
* Dsarily O(C ty hove مومت اه ول عول ای باه
> Dardlurdaes ofr permtcdy do udieaded Porc cole trout
process (OLD) systecre.
Bo Oke chew wr
© Gckews tteqratioa
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO سا0 لح 0 لا سواه 1 وهم
صفحه 27:
+ Qore Owstwowe Orskn wours
© Qa cowie
© Cy, cored wetches in uddresses (wespelns, 2p corde errors)
© Derg address bets مه حول بو aad purye duplicaies
© haw © propane yrkies
© Darchase schewa way be 9 (adertized) view of و موه
Bl Oho cht سوه
© Raw dota ay be to kane i store ork
۶ له مه (ط سل جاطه) سل سوب
۳ by query optieizer to use
فص ری تا
سا0 لح 0 لا سواه 1 جوصه 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 28:
+ a
© Okvewivd votes oe vy هه وه ری لطس oad wopped to Pull
okies اه بو
© Resuhodt schews is coled u ste schewa
© Ove cropicded schews structures
* GoowPoke schewa! wuligle levels oP dicoeasica tables
* Opestehaioa: culige Part tables
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO سا0 لح 0 لا سواه 1 موم
صفحه 29:
tore
store-id
item-id city
iteniname sales state
color item-id country
‘ae store-id
category customer-id 1
date customer
item-info
08 customer-id
date-info price ame
street
date
month
quarter
year
state
zipcode
country
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO سا0 لح 0 لا سواه 1 وهم
صفحه 30:
Oxia Oratory
© Ota wintey te he provess oP sewrouicwatcdly cody zieg karye databases to Pod
عم خی
سا ام من لیا میج( ۲
© rede Pa پل vod uppioad poses له لو و rich, bused oa و
ام (lero, fob re, <x, «.) rod post history
© Predet Po paters of phowe cakes ard usage ty Hel) ty be Prachi
۲ سامت ین of predvioa weckeniows:
۰ یه
١ مان ما تن و مسجو ches و۱ ماه مایت ۰ بصن میج
۰ لب م6
١ ven a set of cropper Por oct حصا Pucctos, pred the Puce
ای ور زر و و قح
سا0 لح 0 لا سواه 1 همه 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 31:
Octa Orctary (Coc)
© ied books thot are oPtea bousht by “sia” oustewers. IP a eur
suk custower buys var suck book, sucgeet the vers tov.
مصحی تس و First step وه لح سا رو یه و
ی لو موه وا موه وتا یی بط
Ohsters ©
هد ره وه و و واه موب وی لاو x). *
لس سس
* Ortertica oP اما مت وان it deteviiog epidewics
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO 16.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 32:
حطی() موس
۲ نج موه پا حط وان objerts to cheses.
۱ eurcere oppiood, should ke or she be
hessiied us low risk, wedi risk or high risk?
© Ops ficaiog rules Por cbove exanple could use a vere, of dota, suck a
eduuived level, sokry, ۴, عاج
0 < سس( لمع صصص 2 و ۵ مس ۲ ©
P.oredt = excetect =
ood اس = P.deqer ,۵ مس ۲ و
(۲2,۵۵۵۵ ک وس ۵ امه 96,000 < عسمسس.)
P.credt = yood >=
© Ques oe wt و تم روج wy be sowe wischssficaic
© Ohkssficaiva nies con be shows cowponiy os 0 devivd ree.
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO سا0 لح 0 لا سواه 1 موص
صفحه 33:
doctorate
0 excellent
©Sbervehnts, Cork ced Cnakershe
bachelors _\\masters
bad average good
© bad O average
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO و66
صفحه 34:
+ ee ea
۲ ناد مدص a dota sexrple to whick the سم لاه سا مشاه
© Greed top dows ومیل اه موب ees.
© @uck itera ade oP the tree portiows the dota ممم لحصما وحصي صم
بو virtbue, cod portizotag vondiiog Por te ode
© Let xk!
۱ dd (or wont) oF he tewe ot he onde beloan to the save ches, or
مج روطب لو وا ما را ام
woe ©Sbervehnts, Cork ced Cnakershe 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 35:
@vsi Cpls
BE Rick best ainbates oad combiows oa hick i parties
Bl Dhe pany of a vet G oF traci Ket be رقم لح kt severd ways.
© ی هه اس جا - صحصمك خانم اه نس = |],
1
1 2717 جه لايك جا تسم خا ومح وز
[
بت )۵( - 4۶ 5
21 ۱
© Whoo dl هس )سا اه و و مه مات 0
© ج) مجمی سم ) ( ۵ وج اه سوت ماه مه
سا0 لح 0 لا سواه 1 666 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 36:
+ @vst Opts (Ova)
Bl coher weer of puny he مج رو whick ام سا cor
۹
euro )0( > - 09,
24
7
© hea a set )8 صط لأدد جز tiple vets (i, 120, ©, ..., رع we coo wear the purty oF
the resutoat set oP sets os!
۲
ع 5
=f burity (S) )@ ری ره رم
)15 =
1
BOD he iPorwaiiva yaa due ty poricukar split oP G icin G, 1 2 0, © رت
رگا رک 6) م1 eon G) = AG) — rr (Gy. Ge, G)
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO سا0 لح 0 لا سواه 1 موم
صفحه 37:
+ @vxt Opts (Ove)
۲ مجك( of “csi” oP a opi
(G{G, @ زرك 2 Shog Ist
APoreraierootest (G, {Oy Gay و - - ((ز —— log,
5-5 11S 151
1" ات مسد بون GAG, Gay... G
مرکا ,6) مس سم م1 Gay 2, GS)
۱
wor 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 38:
+ Pradoq Bost Opty
11 Outeepried :له لح مب ان اف
رویط( sph, oe obi ات و chee
© iar opt iy oll poseble bredkup of voker tly tur sets, ord pick the best
Bl Oui evoked oirbuter (cat be sorted ia woeaciePul order)
۶ توق
» Gon chew, مر لاو هس مت بو
~ Ox, Picker ov (, (0, 6, 66, ,0ك هل > 00, > ©
(۳ he ucke that quer best oplt
© تاد روش
۵ ارت تما ان بویت x ke soxve ute hur ruchy enardeot
Saal
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO 666 1 سا0 لح 0 لا سواه
صفحه 39:
+ OeosiowTree Oowirwioa @lyprikkw
Orovedee Crow ree (G)
مس )۵(:
() مسد" جسم حدصت
[GO] <d,) bea عورة < ( 8) روصم )ع
۳9
و
B; ات مه ططاره ار
Ose best sph Porn (aorves ol airbus) iy portion
Cri G, ce
© دسم
anton (G);
r
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO سا0 لح 0 لا سواه 1 و66
صفحه 40:
+ Ober Types of سج ان
BH Wr wal wet vkeoPers ory otded i other uichueure unl ore ont evened here
۳ و chooPers we Owes teorew, whick swe
(صاع لد اهام - (ك اجام
(9)م
where
عم | 1) = probblay oF ketene مسال ts okie رك
P (| ©) = بك اه سول مه ری ط رام
له ره سا اه موی ط رومام = ( عم
p (d) = probubly سول
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wero ©Sbervehnts, Cork ced Cnakershe
صفحه 41:
+ Ouive Oqevtea OkeePers
وس لاه Daves ۷
(0۱۰) همسجم ۶
0
اه اه ۲ سوه اج ۱ و لس سا مه ( )مر ©
جع ات سح سح دكات كدوجو 0 سام ,عاص سا زار و ۲
وت راما اجه شا لول
la)". eld) 2) 4( * لو اهام - لو | 0)ام
Cork of he p (d| 0) coo be epikosted Prow u kistoyren va dudves Por ©
سس پر
۱ the Ristoqracy is تم Proc هه روا عا
۱ otirbutes are wore expeepive iy ooepuie ued store
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO 108.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 42:
وزووو ین ون
© Rewessiva و تاه مت بانط vohue, roker theca ches.
BE Oce uny 6 kPer coe فصا جاص يد ب رک رک رنه
Ye qty Gta et. tag X,
Bho park ot keeor poh i ood ا رسي
© ری و he process of يلم" curve tha Pit the dota te عنصت اجات مح
Parag.
18 ج21 Ai voy ody be approxi
© bern of او data, or
© brome he rektiocshiy t vet excl مخصيامم د
۲ ی مود 7 Pied coe ند ur the best poonible Pa.
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wee ©Sbervehnts, Cork ced Cnakershe
صفحه 43:
دج ی +
۲ Retal shops ore ولا مها سوه و لو ماه tiews thot people
bw.
© Gowevee why buys bread is quie thely dev to buy wil
© © persva whe bout the book Dutabusr Gpstew Orurepts te quite tkely ober to
buy the book Operatcy Gustew Orwepts.
© Ossurtdives tePorwoiva cot be used to severd ways.
© Gy. whoo asiower buys 0 poricder book, oc colo shop way suggest
sussuciated books.
© Qsevcntod res:
bread = لب OB-Crwepts, OG-Oruepts = Detworks
© bePt head side: odievedeat, right hucd side! pease quect
© موه و۲ rue ust hove oo ussecidied populaiicg; the popukaioe cveststs oF
واه اه بو و
» xx, ek rxexeton (ode) of و shop fs oa ketnre, ond the ort oP ol
سیم ات سیر
wero ©Sbervehnts, Cork ced Cnakershe 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 44:
+ Ovevokion Rube (Ovu.)
ی لس من و اس بو ,اوه لس و ما Ques ۱
مس سا ماه مج اج و مان هسوسو ۲
nde. جر مسج ad the
© Cox. suppose voy 0.000 pervect of ol purchoses fochide wil ord
soreurddvers. “Nhe support Por the nue ts wil => soreudhivers is law.
جا لحم عمجت هط how cPted he poosequed is اه مسجت وت و0 ۲
ine.
© Ox. ke ne bread = wilt kes و سوه و OO percent FOO pervedi of
the purchases trot focide bread uy tockide ils.
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wee ©Sbervehnts, Cork ced Cnakershe
صفحه 45:
+ Prachay Osevonion Ques
Be oe cecerdly od) ieresied ia wsspcidiva niles wil reesvoubly high support
(€.9. support oP O% or recter)
۲ اسب سمش
۱۳ dl posse sets oP relevent tec.
pucker of مس Brad te supper (le. ont how ony موه و
tows tn the or).
bere teweet! sets wih =PPreuly kids support
تمهت مج جا مه توا بو
(Crow tewset @yerde he nlc @-{b} 2b Por ewk bE @.
۷ Capper of nike = spent (@).
% OnePikewe of nde = support (P ) | support (B - {})
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wero ©Sbervehnts, Cork ced Cnakershe
صفحه 46:
Praag Gupport
© Osterxoice support oF tewsrts vic o stage poss oo set oP iresurioas
© bere tewsrts! sets wit o high coud of the ead oP the pos
BP weer wt euch ty hold ol counts Por ofl ی و williple passes, بط
اس وا ها موه رل poss.
۲ من Oure on teweet tr eric
se pret صمي be peter,
Phe prior tevkokne 7 Pied hirge tere!
© Poss 0: cowl support oF all sets its just (itew. Blxoicate those tiews wits bw
purport
oP ftews suck trot ol ts Hitec subsets ore kore بو ره تال Puss و
جج للم Orart support oP ofl *
Gtop Phere ore ow candidates: *
ts cand (support) ها 1
wero ©Sbervehnts, Cork ced Cnakershe 6 ,0۷06 بط 9 - مومسم 6 ی
صفحه 47:
6 Types oP @se00ntiow
§ @cstc ossertaicg ndes hove severd bevtaiccs
۲ Oevisiogs Pow the experted probubiiiy are wore ها
© C.y. Pwo people porches breed, oad woop people اس veredl, د عشي
Pew wold be expevied to یم bots
© Oe we terested ta postive us welles oetnive corrections between sets oP tems
۱ @ostive corretticd: co-pocun cope ts higher thoc predicted
۲ موی ماه مهم( ts lower trac predicted
© Gequews اه | یه
۶ حلص مه رم من عمط بیج tO days
© تون Pro tewpord puteros
© G.y, devicion Brow « steady growls
8 ) sdles oP wtoter wear yo dowd to Sucre
* Oot surprsiy, pot oF a koowa poterc.
* book قرط و Brow uddue predicted usta post putlerc
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wer ©Sbervehnts, Cork ced Cnakershe
صفحه 48:
Ohperiay
«8 رامش نصا Prrdoy clusters of points fo the yived data suck thot stakes price
عخصام ی با ما با
روت یحو وا وی سل بو لاو چا نون B®
۶ Grow ports tie roots (Por a ued f) suck thot he average dooce عمج
Beano the امس of اه مت له
و اس و وی و مه ماه روا بای سس لسمین) ۲
© موه وه ی لو dstoue betwerd every por oP potas ino
hoster
Bice bee sited extrosively مدل امد من انحا بوصاصاماد جا ete
© مد موه بت مت of cistertay tevhaques that roa hoa very kere dott
vee
© x. he @irck chetertery chorion (coor okerty)
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wwe ©Sbervehnts, Cork ced Cnakershe
صفحه 49:
Werachicd Ohsteriag
Breet Brey barca cheer
© (ke word سوه مها بجوو كاسما oot wean 9 predoioa صم ممم
۵
ست سوت مس تما
systews (e.q. ‘Vchow, wore va this kter) رووتسط موه تطامووت م0 ۲
Oggiveraive chsiertay deprihes لا
und oy oo ماه جوا ما مضه وت اه ما واه لو لش ©
اد اه را ۱
rePiae (breuk) cheters iio sadly ۱
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO wero ©Sbervehnts, Cork ced Cnakershe
صفحه 50:
+ 0
1 سا مها ماب رصان destqued to hod very harge dotasets
© Cy, the @irch اه
© Das ites! use oo evewory rer te store poids thot are betoy chistered
© Sosert ports vee oto fre جه کاس ار سس هر )سا ما
صاه مش P is bees tho soxwe 3 deter away
0B ere are wore lee odes thon Pil io wewory, werye existing chsters
thot are dose to rock other
۴ )۵ ۳ cud of First pass we yet ohare oueber of chisters of the leuwes oP
the R-tree
* Derg chisters to reduce te anober of chester
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO سا0 لح 0 لا سواه 1 همه
صفحه 51:
$ave ern
© Gok predict ut movies lboobesl ... per ray be tote dict, oro
oe
ممصم و تا موی وا
وحمب ام سم ام Ober people wi ©
© Dhe prePerewwes oP suck people Por a caw .لالج
© Ove اه لو من لیا اس
© Chester people va the busts oP prePerewer Por woview
© Dhea chester wovies vu the boss oP bet thed by the sae chisters oP
peuple
© @ysic chister peuple bused vu their prePereuves Por (he ات را
cheters of) coves
© Repeat cbove il equlbrice
۲ Obie ماس fs vo etre oP poloboraive Pilertay, where vers مان
fo the task oP Pthertoy tePoroaica to Ped iPorcaica او چاو
wou
Oxsdrer Gyetre Oncewpte - 0" Briar, xq GO, OOOO
صفحه 52:
+ Oter Tyger oP Oracg
© Text wictey: upphicaica oP dota cinta to textud douse
© chester Deb pages ty Prod retiied pages
© cheter payer 3 wer has visited to organize their vist history
© ches) Orb paces cuirraicdy cio o Deb devin
© Oct vevalzaton systews help users exavice hrye uokeves of dott ood detect
بلاسجاب صحصادم
مه و وم كلما ان جتسججمه جيمها جلحصب براسجاب 055 ©
ام و a لو very وه ما ۶
سا0 لح 0 لا سواه 1 666 6 ,0۷06 بط 9 - مومسم 6 ی
Chapter 18: Data Analysis and Mining
Database System Concepts
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
Chapter 18: Data Analysis and Mining
Decision Support Systems
Data Analysis and OLAP
Data Warehousing
Data Mining
Database System Concepts - 5th Edition, Aug 26, 2005
18.2
©Silberschatz, Korth and Sudarshan
Decision Support Systems
Decision-support systems are used to make business decisions, often based on
data collected by on-line transaction-processing systems.
Examples of business decisions:
What items to stock?
What insurance premium to change?
To whom to send advertisements?
Examples of data used for making decisions
Retail sales transaction details
Customer profiles (income, age, gender, etc.)
Database System Concepts - 5th Edition, Aug 26, 2005
18.3
©Silberschatz, Korth and Sudarshan
Decision-Support Systems: Overview
Data analysis tasks are simplified by specialized tools and SQL extensions
Example tasks
For each product category and each region, what were the total sales in the
last quarter and how do they compare with the same quarter last year
As above, for each product category and each customer category
Statistical analysis packages (e.g., : S++) can be interfaced with databases
Statistical analysis is a large field, but not covered here
Data mining seeks to discover knowledge automatically in the form of statistical rules
and patterns from large databases.
A data warehouse archives information gathered from multiple sources, and stores
it under a unified schema, at a single site.
Important for large businesses that generate data from multiple divisions,
possibly at multiple sites
Data may also be purchased externally
Database System Concepts - 5th Edition, Aug 26, 2005
18.4
©Silberschatz, Korth and Sudarshan
Data Analysis and OLAP
Online Analytical Processing (OLAP)
Interactive analysis of data, allowing data to be summarized and viewed in
different ways in an online fashion (with negligible delay)
Data that can be modeled as dimension attributes and measure attributes are
called multidimensional data.
Measure attributes
measure some value
can be aggregated upon
e.g. the attribute number of the sales relation
Dimension attributes
define the dimensions on which measure attributes (or aggregates
thereof) are viewed
e.g. the attributes item_name, color, and size of the sales relation
Database System Concepts - 5th Edition, Aug 26, 2005
18.5
©Silberschatz, Korth and Sudarshan
Cross Tabulation of sales by item-name and
color
The table above is an example of a cross-tabulation (cross-tab), also referred to as a
pivot-table.
Values for one of the dimension attributes form the row headers
Values for another dimension attribute form the column headers
Other dimension attributes are listed on top
Values in individual cells are (aggregates of) the values of the
dimension attributes that specify the cell.
Database System Concepts - 5th Edition, Aug 26, 2005
18.6
©Silberschatz, Korth and Sudarshan
Relational Representation of Cross-tabs
Cross-tabs can be represented as
relations
We use the value all is used to
represent aggregates
The SQL:1999 standard actually
uses null values in place of all despite
confusion with regular null values
Database System Concepts - 5th Edition, Aug 26, 2005
18.7
©Silberschatz, Korth and Sudarshan
Data Cube
A data cube is a multidimensional generalization of a cross-tab
Can have n dimensions; we show 3 below
Cross-tabs can be used as views on a data cube
Database System Concepts - 5th Edition, Aug 26, 2005
18.8
©Silberschatz, Korth and Sudarshan
Online Analytical Processing
Pivoting: changing the dimensions used in a cross-tab is called
Slicing: creating a cross-tab for fixed values only
Sometimes called dicing, particularly when values for multiple dimensions are
fixed.
Rollup: moving from finer-granularity data to a coarser granularity
Drill down: The opposite operation - that of moving from coarser-granularity data
to finer-granularity data
Database System Concepts - 5th Edition, Aug 26, 2005
18.9
©Silberschatz, Korth and Sudarshan
Hierarchies on Dimensions
Hierarchy on dimension attributes: lets dimensions to be viewed at different
levels of detail
E.g. the dimension DateTime can be used to aggregate by hour of day, date,
day of week, month, quarter or year
Database System Concepts - 5th Edition, Aug 26, 2005
18.10
©Silberschatz, Korth and Sudarshan
Cross Tabulation With Hierarchy
Cross-tabs can be easily extended to deal with hierarchies
Can drill down or roll up on a hierarchy
Database System Concepts - 5th Edition, Aug 26, 2005
18.11
©Silberschatz, Korth and Sudarshan
OLAP Implementation
The earliest OLAP systems used multidimensional arrays in memory to store data
cubes, and are referred to as multidimensional OLAP (MOLAP) systems.
OLAP implementations using only relational database features are called relational
OLAP (ROLAP) systems
Hybrid systems, which store some summaries in memory and store the base data
and other summaries in a relational database, are called hybrid OLAP (HOLAP)
systems.
Database System Concepts - 5th Edition, Aug 26, 2005
18.12
©Silberschatz, Korth and Sudarshan
OLAP Implementation (Cont.)
Early OLAP systems precomputed all possible aggregates in order to provide online
response
Space and time requirements for doing so can be very high
2n combinations of group by
It suffices to precompute some aggregates, and compute others on demand
from one of the precomputed aggregates
Can compute aggregate on (item-name, color) from an aggregate on (itemname, color, size)
– For all but a few “non-decomposable” aggregates such as median
– is cheaper than computing it from scratch
Several optimizations available for computing multiple aggregates
Can compute aggregate on (item-name, color) from an aggregate on
(item-name, color, size)
Can compute aggregates on (item-name, color, size),
(item-name, color) and (item-name) using a single sorting
of the base data
Database System Concepts - 5th Edition, Aug 26, 2005
18.13
©Silberschatz, Korth and Sudarshan
Extended Aggregation in SQL:1999
The cube operation computes union of group by’s on every subset of the specified
attributes
E.g. consider the query
select item-name, color, size, sum(number)
from sales
group by cube(item-name, color, size)
This computes the union of eight different groupings of the sales relation:
{ (item-name, color, size), (item-name, color),
(item-name, size),
(color, size),
(item-name),
(color),
(size),
()}
where ( ) denotes an empty group by list.
For each grouping, the result contains the null value
for attributes not present in the grouping.
Database System Concepts - 5th Edition, Aug 26, 2005
18.14
©Silberschatz, Korth and Sudarshan
Extended Aggregation (Cont.)
Relational representation of cross-tab that we saw earlier, but with null in place of all, can
be computed by
select item-name, color, sum(number)
from sales
group by cube(item-name, color)
The function grouping() can be applied on an attribute
Returns 1 if the value is a null value representing all, and returns 0 in all other cases.
select item-name, color, size, sum(number),
grouping(item-name) as item-name-flag,
grouping(color) as color-flag,
grouping(size) as size-flag,
from sales
group by cube(item-name, color, size)
Can use the function decode() in the select clause to replace
such nulls by a value such as all
E.g. replace item-name in first query by
decode( grouping(item-name), 1, ‘all’, item-name)
Database System Concepts - 5th Edition, Aug 26, 2005
18.15
©Silberschatz, Korth and Sudarshan
Extended Aggregation (Cont.)
The rollup construct generates union on every prefix of specified list of attributes
E.g.
select item-name, color, size, sum(number)
from sales
group by rollup(item-name, color, size)
Generates union of four groupings:
{ (item-name, color, size), (item-name, color), (item-name), ( ) }
Rollup can be used to generate aggregates at multiple levels of a
hierarchy.
E.g., suppose table itemcategory(item-name, category) gives the category of each
item. Then
select category, item-name, sum(number)
from sales, itemcategory
where sales.item-name = itemcategory.item-name
group by rollup(category, item-name)
would give a hierarchical summary by item-name and by category.
Database System Concepts - 5th Edition, Aug 26, 2005
18.16
©Silberschatz, Korth and Sudarshan
Extended Aggregation (Cont.)
Multiple rollups and cubes can be used in a single group by clause
Each generates set of group by lists, cross product of sets gives overall set of
group by lists
E.g.,
select item-name, color, size, sum(number)
from sales
group by rollup(item-name), rollup(color, size)
generates the groupings
{item-name, ()} X {(color, size), (color), ()}
= { (item-name, color, size), (item-name, color), (item-name),
(color, size), (color), ( ) }
Database System Concepts - 5th Edition, Aug 26, 2005
18.17
©Silberschatz, Korth and Sudarshan
Ranking
Ranking is done in conjunction with an order by specification.
Given a relation student-marks(student-id, marks) find the rank of each student.
select student-id, rank( ) over (order by marks desc) as s-rank
from student-marks
An extra order by clause is needed to get them in sorted order
select student-id, rank ( ) over (order by marks desc) as s-rank
from student-marks
order by s-rank
Ranking may leave gaps: e.g. if 2 students have the same top mark, both have rank 1,
and the next rank is 3
dense_rank does not leave gaps, so next dense rank would be 2
Database System Concepts - 5th Edition, Aug 26, 2005
18.18
©Silberschatz, Korth and Sudarshan
Ranking (Cont.)
Ranking can be done within partition of the data.
“Find the rank of students within each section.”
select student-id, section,
rank ( ) over (partition by section order by marks desc)
as sec-rank
from student-marks, student-section
where student-marks.student-id = student-section.student-id
order by section, sec-rank
Multiple rank clauses can occur in a single select clause
Ranking is done after applying group by clause/aggregation
Database System Concepts - 5th Edition, Aug 26, 2005
18.19
©Silberschatz, Korth and Sudarshan
Ranking (Cont.)
Other ranking functions:
percent_rank (within partition, if partitioning is done)
cume_dist (cumulative distribution)
fraction of tuples with preceding values
row_number (non-deterministic in presence of duplicates)
SQL:1999 permits the user to specify nulls first or nulls last
select student-id,
rank ( ) over (order by marks desc nulls last) as s-rank
from student-marks
Database System Concepts - 5th Edition, Aug 26, 2005
18.20
©Silberschatz, Korth and Sudarshan
Ranking (Cont.)
For a given constant n, the ranking the function ntile(n) takes the tuples in each
partition in the specified order, and divides them into n buckets with equal numbers
of tuples.
E.g.:
select threetile, sum(salary)
from (
select salary, ntile(3) over (order by salary) as threetile
from employee) as s
group by threetile
Database System Concepts - 5th Edition, Aug 26, 2005
18.21
©Silberschatz, Korth and Sudarshan
Windowing
Used to smooth out random variations.
E.g.: moving average: “Given sales values for each date, calculate for each date the
average of the sales on that day, the previous day, and the next day”
Window specification in SQL:
Given relation sales(date, value)
select date, sum(value) over
(order by date between rows 1 preceding and 1 following)
from sales
Examples of other window specifications:
between rows unbounded preceding and current
rows unbounded preceding
range between 10 preceding and current row
All rows with values between current row value –10 to current value
range interval 10 day preceding
Not including current row
Database System Concepts - 5th Edition, Aug 26, 2005
18.22
©Silberschatz, Korth and Sudarshan
Windowing (Cont.)
Can do windowing within partitions
E.g. Given a relation transaction (account-number, date-time, value), where
value is positive for a deposit and negative for a withdrawal
“Find total balance of each account after each transaction on the account”
select account-number, date-time,
sum (value ) over
(partition by account-number
order by date-time
rows unbounded preceding)
as balance
from transaction
order by account-number, date-time
Database System Concepts - 5th Edition, Aug 26, 2005
18.23
©Silberschatz, Korth and Sudarshan
Data Warehousing
Data sources often store only current data, not historical data
Corporate decision making requires a unified view of all organizational data,
including historical data
A data warehouse is a repository (archive) of information gathered from
multiple sources, stored under a unified schema, at a single site
Greatly simplifies querying, permits study of historical trends
Shifts decision support query load away from transaction processing
systems
Database System Concepts - 5th Edition, Aug 26, 2005
18.24
©Silberschatz, Korth and Sudarshan
Data Warehousing
Database System Concepts - 5th Edition, Aug 26, 2005
18.25
©Silberschatz, Korth and Sudarshan
Design Issues
When and how to gather data
Source driven architecture: data sources transmit new information to
warehouse, either continuously or periodically (e.g. at night)
Destination driven architecture: warehouse periodically requests new
information from data sources
Keeping warehouse exactly synchronized with data sources (e.g. using twophase commit) is too expensive
Usually OK to have slightly out-of-date data at warehouse
Data/updates are periodically downloaded form online transaction
processing (OLTP) systems.
What schema to use
Schema integration
Database System Concepts - 5th Edition, Aug 26, 2005
18.26
©Silberschatz, Korth and Sudarshan
More Warehouse Design Issues
Data cleansing
E.g. correct mistakes in addresses (misspellings, zip code errors)
Merge address lists from different sources and purge duplicates
How to propagate updates
Warehouse schema may be a (materialized) view of schema from data
sources
What data to summarize
Raw data may be too large to store on-line
Aggregate values (totals/subtotals) often suffice
Queries on raw data can often be transformed by query optimizer to use
aggregate values
Database System Concepts - 5th Edition, Aug 26, 2005
18.27
©Silberschatz, Korth and Sudarshan
Warehouse Schemas
Dimension values are usually encoded using small integers and mapped to full
values via dimension tables
Resultant schema is called a star schema
More complicated schema structures
Snowflake schema: multiple levels of dimension tables
Constellation: multiple fact tables
Database System Concepts - 5th Edition, Aug 26, 2005
18.28
©Silberschatz, Korth and Sudarshan
Data Warehouse Schema
Database System Concepts - 5th Edition, Aug 26, 2005
18.29
©Silberschatz, Korth and Sudarshan
Data Mining
Data mining is the process of semi-automatically analyzing large databases to find
useful patterns
Prediction based on past history
Predict if a credit card applicant poses a good credit risk, based on some
attributes (income, job type, age, ..) and past history
Predict if a pattern of phone calling card usage is likely to be fraudulent
Some examples of prediction mechanisms:
Classification
Given a new item whose class is unknown, predict to which class it belongs
Regression formulae
Given a set of mappings for an unknown function, predict the function
result for a new parameter value
Database System Concepts - 5th Edition, Aug 26, 2005
18.30
©Silberschatz, Korth and Sudarshan
Data Mining (Cont.)
Descriptive Patterns
Associations
Associations may be used as a first step in detecting causation
Find books that are often bought by “similar” customers. If a new
such customer buys one such book, suggest the others too.
E.g. association between exposure to chemical X and cancer,
Clusters
E.g. typhoid cases were clustered in an area surrounding a
contaminated well
Detection of clusters remains important in detecting epidemics
Database System Concepts - 5th Edition, Aug 26, 2005
18.31
©Silberschatz, Korth and Sudarshan
Classification Rules
Classification rules help assign new objects to classes.
E.g., given a new automobile insurance applicant, should he or she be
classified as low risk, medium risk or high risk?
Classification rules for above example could use a variety of data, such as
educational level, salary, age, etc.
person P, P.degree = masters and P.income > 75,000
P.credit = excellent
person P, P.degree = bachelors and
(P.income 25,000 and P.income 75,000)
P.credit = good
Rules are not necessarily exact: there may be some misclassifications
Classification rules can be shown compactly as a decision tree.
Database System Concepts - 5th Edition, Aug 26, 2005
18.32
©Silberschatz, Korth and Sudarshan
Decision Tree
Database System Concepts - 5th Edition, Aug 26, 2005
18.33
©Silberschatz, Korth and Sudarshan
Construction of Decision Trees
Training set: a data sample in which the classification is already known.
Greedy top down generation of decision trees.
Each internal node of the tree partitions the data into groups based on a
partitioning attribute, and a partitioning condition for the node
Leaf node:
all (or most) of the items at the node belong to the same class, or
all attributes have been considered, and no further partitioning is possible.
Database System Concepts - 5th Edition, Aug 26, 2005
18.34
©Silberschatz, Korth and Sudarshan
Best Splits
Pick best attributes and conditions on which to partition
The purity of a set S of training instances can be measured quantitatively in several ways.
Notation: number of classes = k, number of instances = |S|,
fraction of instances in class i = pi.
The Gini measure of purity is defined as
[
Gini (S) = 1k-
p2i
i- 1
When all instances are in a single class, the Gini value is 0
It reaches its maximum (of 1 –1 /k) if each class the same number of instances.
Database System Concepts - 5th Edition, Aug 26, 2005
18.35
©Silberschatz, Korth and Sudarshan
Best Splits (Cont.)
Another measure of purity is the entropy measure, which is defined as
k
entropy (S) = – pilog2
i- 1
pi
When a set S is split into multiple sets Si, I=1, 2, …, r, we can measure the purity of
the resultant set of sets as:
r
|Si|
purity(S1, S2, ….., Sr) = purity (Si)
i= |S|
1
The information gain due to particular split of S into S i, i = 1, 2, …., r
Information-gain (S, {S1, S2, …., Sr) = purity(S ) – purity (S1, S2, … Sr)
Database System Concepts - 5th Edition, Aug 26, 2005
18.36
©Silberschatz, Korth and Sudarshan
Best Splits (Cont.)
Measure of “cost” of a split:
Information-content (S, {S1, S2, ….., Sr})) = –
r |S |
i
i- 1 |S|
log2
|Si|
|S|
Information-gain ratio = Information-gain (S, {S1, S2, ……, Sr})
Information-content (S, {S1, S2, ….., Sr})
The best split is the one that gives the maximum information gain ratio
Database System Concepts - 5th Edition, Aug 26, 2005
18.37
©Silberschatz, Korth and Sudarshan
Finding Best Splits
Categorical attributes (with no meaningful order):
Multi-way split, one child for each value
Binary split: try all possible breakup of values into two sets, and pick the best
Continuous-valued attributes (can be sorted in a meaningful order)
Binary split:
Sort values, try each as a split point
– E.g. if values are 1, 10, 15, 25, split at 1, 10, 15
Pick the value that gives best split
Multi-way split:
A series of binary splits on the same attribute has roughly equivalent
effect
Database System Concepts - 5th Edition, Aug 26, 2005
18.38
©Silberschatz, Korth and Sudarshan
Decision-Tree Construction Algorithm
Procedure GrowTree (S )
Partition (S );
Procedure Partition (S)
if ( purity (S ) > p or |S| < s ) then
return;
for each attribute A
evaluate splits on attribute A;
Use best split found (across all attributes) to partition
S into S1, S2, …., Sr,
for i = 1, 2, ….., r
Partition (Si );
Database System Concepts - 5th Edition, Aug 26, 2005
18.39
©Silberschatz, Korth and Sudarshan
Other Types of Classifiers
Neural net classifiers are studied in artificial intelligence and are not covered here
Bayesian classifiers use Bayes theorem, which says
where
p (c j | d ) = p (d | c j ) p (c j )
p(d)
p (cj | d ) = probability of instance d being in class cj,
p (d | cj ) = probability of generating instance d given class cj,
p (cj ) = probability of occurrence of class cj, and
p (d ) = probability of instance d occuring
Database System Concepts - 5th Edition, Aug 26, 2005
18.40
©Silberschatz, Korth and Sudarshan
Naïve Bayesian Classifiers
Bayesian classifiers require
computation of p (d | cj )
precomputation of p (cj )
p (d ) can be ignored since it is the same for all classes
To simplify the task, naïve Bayesian classifiers assume attributes have
independent distributions, and thereby estimate
p (d | cj) = p (d1 | cj ) * p (d2 | cj ) * ….* (p (dn | cj )
Each of the p (di | cj ) can be estimated from a histogram on di values for
each class cj
the histogram is computed from the training instances
Histograms on multiple attributes are more expensive to compute and store
Database System Concepts - 5th Edition, Aug 26, 2005
18.41
©Silberschatz, Korth and Sudarshan
Regression
Regression deals with the prediction of a value, rather than a class.
Given values for a set of variables, X1, X2, …, Xn, we wish to predict the value
of a variable Y.
One way is to infer coefficients a0, a1, a1, …, an such that
Y = a0 + a1 * X1 + a2 * X2 + … + an * Xn
Finding such a linear polynomial is called linear regression.
In general, the process of finding a curve that fits the data is also called curve
fitting.
The fit may only be approximate
because of noise in the data, or
because the relationship is not exactly a polynomial
Regression aims to find coefficients that give the best possible fit.
Database System Concepts - 5th Edition, Aug 26, 2005
18.42
©Silberschatz, Korth and Sudarshan
Association Rules
Retail shops are often interested in associations between different items that people
buy.
Someone who buys bread is quite likely also to buy milk
A person who bought the book Database System Concepts is quite likely also to
buy the book Operating System Concepts.
Associations information can be used in several ways.
E.g. when a customer buys a particular book, an online shop may suggest
associated books.
Association rules:
bread milk
DB-Concepts, OS-Concepts Networks
Left hand side: antecedent,
right hand side: consequent
An association rule must have an associated population; the population consists of
a set of instances
E.g. each transaction (sale) at a shop is an instance, and the set of all
transactions is the population
Database System Concepts - 5th Edition, Aug 26, 2005
18.43
©Silberschatz, Korth and Sudarshan
Association Rules (Cont.)
Rules have an associated support, as well as an associated confidence.
Support is a measure of what fraction of the population satisfies both the antecedent
and the consequent of the rule.
E.g. suppose only 0.001 percent of all purchases include milk and
screwdrivers. The support for the rule is milk screwdrivers is low.
Confidence is a measure of how often the consequent is true when the antecedent is
true.
E.g. the rule bread milk has a confidence of 80 percent if 80 percent of
the purchases that include bread also include milk.
Database System Concepts - 5th Edition, Aug 26, 2005
18.44
©Silberschatz, Korth and Sudarshan
Finding Association Rules
We are generally only interested in association rules with reasonably high support
(e.g. support of 2% or greater)
Naïve algorithm
1.
Consider all possible sets of relevant items.
2.
For each set find its support (i.e. count how many transactions purchase all
items in the set).
3.
Large itemsets: sets with sufficiently high support
Use large itemsets to generate association rules.
1.
From itemset A generate the rule A - {b } b for each b A.
Support of rule = support (A).
Confidence of rule = support (A ) / support (A - {b })
Database System Concepts - 5th Edition, Aug 26, 2005
18.45
©Silberschatz, Korth and Sudarshan
Finding Support
Determine support of itemsets via a single pass on set of transactions
Large itemsets: sets with a high count at the end of the pass
If memory not enough to hold all counts for all itemsets use multiple passes, considering
only some itemsets in each pass.
Optimization: Once an itemset is eliminated because its count (support) is too small none of
its supersets needs to be considered.
The a priori technique to find large itemsets:
Pass 1: count support of all sets with just 1 item. Eliminate those items with low
support
Pass i: candidates: every set of i items such that all its i-1 item subsets are large
Count support of all candidates
Stop if there are no candidates
Database System Concepts - 5th Edition, Aug 26, 2005
18.46
©Silberschatz, Korth and Sudarshan
Other Types of Associations
Basic association rules have several limitations
Deviations from the expected probability are more interesting
E.g. if many people purchase bread, and many people purchase cereal, quite a
few would be expected to purchase both
We are interested in positive as well as negative correlations between sets of items
Positive correlation: co-occurrence is higher than predicted
Negative correlation: co-occurrence is lower than predicted
Sequence associations / correlations
E.g. whenever bonds go up, stock prices go down in 2 days
Deviations from temporal patterns
E.g. deviation from a steady growth
E.g. sales of winter wear go down in summer
Not surprising, part of a known pattern.
Look for deviation from value predicted using past patterns
Database System Concepts - 5th Edition, Aug 26, 2005
18.47
©Silberschatz, Korth and Sudarshan
Clustering
Clustering: Intuitively, finding clusters of points in the given data such that similar points
lie in the same cluster
Can be formalized using distance metrics in several ways
Group points into k sets (for a given k) such that the average distance of points
from the centroid of their assigned group is minimized
Centroid: point defined by taking average of coordinates in each dimension.
Another metric: minimize average distance between every pair of points in a
cluster
Has been studied extensively in statistics, but on small data sets
Data mining systems aim at clustering techniques that can handle very large data
sets
E.g. the Birch clustering algorithm (more shortly)
Database System Concepts - 5th Edition, Aug 26, 2005
18.48
©Silberschatz, Korth and Sudarshan
Hierarchical Clustering
Example from biological classification
(the word classification here does not mean a prediction mechanism)
chordata
mammalia
leopards humans
reptilia
snakes crocodiles
Other examples: Internet directory systems (e.g. Yahoo, more on this later)
Agglomerative clustering algorithms
Build small clusters, then cluster small clusters into bigger clusters, and so on
Divisive clustering algorithms
Start with all items in a single cluster, repeatedly refine (break) clusters into smaller
ones
Database System Concepts - 5th Edition, Aug 26, 2005
18.49
©Silberschatz, Korth and Sudarshan
Clustering Algorithms
Clustering algorithms have been designed to handle very large datasets
E.g. the Birch algorithm
Main idea: use an in-memory R-tree to store points that are being clustered
Insert points one at a time into the R-tree, merging a new point with an
existing cluster if is less than some distance away
If there are more leaf nodes than fit in memory, merge existing clusters
that are close to each other
At the end of first pass we get a large number of clusters at the leaves of
the R-tree
Merge clusters to reduce the number of clusters
Database System Concepts - 5th Edition, Aug 26, 2005
18.50
©Silberschatz, Korth and Sudarshan
Collaborative Filtering
Goal: predict what movies/books/… a person may be interested in, on the basis
of
Past preferences of the person
Other people with similar past preferences
The preferences of such people for a new movie/book/…
One approach based on repeated clustering
Cluster people on the basis of preferences for movies
Then cluster movies on the basis of being liked by the same clusters of
people
Again cluster people based on their preferences for (the newly created
clusters of) movies
Repeat above till equilibrium
Above problem is an instance of collaborative filtering, where users collaborate
in the task of filtering information to find information of interest
Database System Concepts - 5th Edition, Aug 26, 2005
18.51
©Silberschatz, Korth and Sudarshan
Other Types of Mining
Text mining: application of data mining to textual documents
cluster Web pages to find related pages
cluster pages a user has visited to organize their visit history
classify Web pages automatically into a Web directory
Data visualization systems help users examine large volumes of data and detect
patterns visually
Can visually encode large amounts of information on a single screen
Humans are very good a detecting visual patterns
Database System Concepts - 5th Edition, Aug 26, 2005
18.52
©Silberschatz, Korth and Sudarshan