صفحه 1:
+ 052
اه( رد۱۱ ۲
عسطالطوط) امه
م6 موه وتا ۲
اد رس من( و
Opsiews هل و
شمه bon Ouwdica ©
§ Preewivr woe wed io وود لش
سا0 لح 0 لا سواه 1 دوه @eedrwr Gyetre Oocowytr, Oe.
صفحه 2:
+ Traweior Provessiay Quars
DP oositers taitdly developed os wulitreded servers to support barge ای
FP terwtecds Pro o sine process.
اما اوه لیلج را و مسا Provide
servers. ول لجی اه چاه ای ها و اب وشوو Processkny
© Prove serves suk ws?
© Cresectaticg Povities to skopiPy creatay user ttierPaces:
© Perstedt quevig oP choot requests vad server respowes
© Routoy of cleo wessuges iy servers
© Coordention oP twe-phuse count whe irneurioay uvess wutigle servers.
8 3 cd TP .: 01008 ممصا WO, Pathway Pr Pode,
Dop Gad Pro DOR, od Coctoa Pow Presare
سا0 لح 0 لا سواه 1 هوه Od. ,تن 6 تیه
صفحه 3:
remote 5 remote server files
clients clients
(a) Process-per-client model (b) Single-process model
Sass
router servers files remote routers servers files
clients
(c) Many-server, single-router model (d) Many-server, many-router model 0
سا0 لح 0 لا سا6 1 هوه Od. ,تن سس 6 تیه
صفحه 4:
+ TO Ovator Orokievtures (Ovd.)
۲ (Proves per cleat wodel - nsteud oF todvicudl loge sesziva per ,ممه
Server process Do nindes wits the tected, اجه ,له اج
ارت مود
۶ نو تس ore kids
© Dubtashiag: bigs CPO ساملس swichtay between
1# Giente process wodel = ol rewote terwicak وه و و اوه server
proves.
© Osed ta chewtserver ewironvedis
© Gener provess is unit edad; low cost Por teead suichiery
اوه مها شم Ov ©
© Dot suited Por pordlel or سل سا
سا0 لح 0 لا سواه 1 هوه Od. ,تن 6 تیه
صفحه 5:
+ DP Ovubr Orokieviwres (Ovu.)
© ول - او مات مروت( upphrdion server processes
اوه سا جات ی واه سل مرو و وه
جوا o sige ooumicaiza process thot routes requests.
© موی server provesses Por wuts upphrctires
© DOuhikrend server process:
© Rosco pordlel or detrbuted ول
© Oxy server woorrouier wodel = wulipke processes coacruaizate wits
whet.
© Cleo com nicdicn processes inieradt wih rier provesses that
rate their requests to the appropriate server.
stots up vad supervises vier provesses. سس مسیون و
سا0 لح 0 لا سواه 1 هوه Od. ,تن 6 تیه
صفحه 6:
input queue
ee
authorization
1
lock manager
5 recovery manager
application
servers:
log manager
database and
resource managers }| تک
output queue
network
سا0 لح 0 لا سواه 1 هوه @eedrwr Gyetre Oocowytr, Oe.
صفحه 7:
: a Qotded Orwiwe oP a TP Ovuior
سس ی وا یی و
۲ موی سجني یت provide persisicat or durcble weseoye queue
pontedts oP queue are sue eved P systecws Puke.
B Ourbe quevetay of اس سا موه موی
© oppiouion server umiies wessuce to durable queve os port oP a
et
© ower the tracsuntiog cows, the MP weaior quarndiers wessuye i
eueuindly delevered, reqardess of praskes.
© ۵010 propertes ure thus provided eve Por wessues seul uiside the
ول
۲ Dey DP woators provide leche, logging, ond recovery services, 0 اه
نا موه موه Koplewect (OTD properties by را
Od. 20 ©Sbervehnts, Cork ced Cnakershe ,تن 6 تیه
صفحه 8:
+ Q@pphoutra Ovvrdintiva Ostay TP Ovaiors
۲ ۵ ۵ ی reds cack subspstew us 0 resource wager thot provides:
trocsunivodl access to svwe set oP resvurces.
BD he tterPace between he DP woctor ond the resource warner & defied by
fet Berne pera
Bh Dhe resource wrenner tierce & dePiced by he X/Open Ditbued
اه متا مس
۱ ۱ لهس له ملس موس و مور وود وت
)6۱60( موس to herr service
۶ Drxeartond RPC proves vale to pucker a seres of ROC cole محا a
یو
۶ لح( perPorwed by aa RPO ore canied خن ورس ها طلست نی the
سا لاو سا موی له رما P there te اه( بو
سا0 لح 0 لا سواه 1 هوه Gyetre Oocowytr, Oe. ۱۳|
صفحه 9:
صفحه 10:
VTraswiodd OorlPows
© OorPows oe نما وت evolve the coerced exertion oP anh: tester
perPorwed by dPPercat provesstay eutiies.
۲ the growth of cetworhs, ood the existeue oP حول موه ول
syste, workPlows provide وی اه پوت موه و ul eke that tavolve
walliple systews.
© Groope oP a workPow delivery of oo ewal wessuye, which yes throughs
severd wus syetews to او ام
© Gack woler perPorws تاه و Porwordiy of the woll ty the ced woller.
© acter rant delver wal, Poke wast be handed search (delvery
۳ weve).
۲ رای و( evolve huevos! ey. loon provessteny, or purchase order
Provessiny.
سا0 لح 0 لا سواه 1 مدمه Od. ,تن 6 تیه
صفحه 11:
Grawples oP OorkPows
Workflow Typical Typical processing
application task entity
electronic-mail routing | electronic-mail message | mailers
humans,
loan processing form processing application software
humans, application
purchase-order processing | form processing software, DBMSs
سا0 لح 0 لا سواه 1 موه @eedrwr Gyetre Oocowytr, Oe.
صفحه 12:
loan
application
© tote post, worhPows were horded by روط( اجه بو
© Cowputerzed workHows ice tp cuiccwote wooy oF the tasks. (But he buco
stl play role ex. fer opprovicry kore.
سا0 لح 0 لا سواه 1 هده @eedrwr Gyetre Oocowytr, Oe.
صفحه 13:
Traswirrd! OorlPows
۲ Qhet ukhess Poly boues tp oowpuierize سامت و
© GpecPicaivn oP workRbwe - detahey the tasks thot wast be carted mut ced
موه | را requireweus.
۱
aby provider سا له soPequards retited ty the correvivess oP
© oy: Loos uppicdica should ot vet lost even P systeu Pek.
© @xtedd recsurion couvepts te the .وسنص مت اه جومت
Bl Gre oF 0 workPow - cows of the ookeriva of skies of tr oocettvect kesh, ond hor
oites (he. udkes) oF ol varcbles ta the executions pho.
سا0 لح 0 لا سواه 1 وده Od. ,تن 6 تیه
صفحه 14:
QOorlkPow GpevPodiva
4
© Gtaic Spenco oP task تس
© Dashes vod depeudeuries ucopay thew ore dePioed bePore the exerutice oP the
workAlous starts.
© Occ establish precoutioas Por exevuizg oP pack tock! sks are exevued voy
whe their prevowdiizgs are suttePed.
© DePoed prevoudicas trough مس
* Gxenuica states oF otter tasks.
“rah pean tart veal Ribs yum excel”
۱0 oP other tasks.
start P tosh jreturas o vole yreuter thar OS” تا
* Cxterad vartubles, thot are wodPied by extercad eves.
“rake punt be vtred wihia OP houry جاسم خا مرت تا ان
Od. ,تن 6 تیه
صفحه 15:
+ QorkPow OpsvPraioa (Ovd.)
© Oywowt tek coordnatoa
(E.4. Cleciroue wal routes syetec و uhick the tex to be schedule Por o gives
ww were depeuds 70 the destoaiod address نات مج ای
renters ore
سا0 لح 0 لا سواه 1 وده @eedrwr Gyetre Oocowytr, Oe.
صفحه 16:
سم صده مه ماس وا
عونا یرجه ما و افو مت BO 0C10
اوه تاو
كلا ولمم ترا سوه اوه اس وا روا B
اه اس و جا اها امم سا موم و وم
۲ تاه مشحت تهج مه بویت a workAous wil و for
جح جما بط ماو افو واه( سا موه اعد و
۶ لاه مسا عم نطو هه ماه - لمموین
۱ state io whick « uorkPlow kes Pulled to ahieve
ts vbevives.
© workhow west reach oo اماد ما وه eve tothe presewe
له و و و
سا0 لح 0 لا سواه 1 موم Od. ,تن 6 تیه
صفحه 17:
oP OorlPows مطلیی<)
تعاس سوه یطوط
B® عون وله با توت ور و tasks Poe
عاص هد جا لماج ولج مه لجه ره صحو روا حور
depeutewies
BO Pxsh oyecis - coin the executive oP o tosh by رات بت و
© Qeckeaisw 7 query to state of the workPow sysiew.
Od. eon? ©Sbervehnts, Cork ced Cnakershe ,تن 6 تیه
صفحه 18:
مس جس ی ی ی ی +
وه رای أن ۳ یو سا له ری و و لاه ۱
و
ول ام و و اوه ول سا ارت مرو توت و ای ۶
سوه هن ده سا اه ما ما نا وه ۶
سوت ی و دنه ( و اه سو) عن - اد راو ۲
Pip detribuied - kas on svkeduer, bul the tek oqeuis ovordioaie their exevuiza by
رصم مور wits Pak viker io suiePy tock depeudeuries ocd pier workPow
EET require EUs.
© eed و skoplest worhPbw exevution systeus
© based vo elevirvdic wail
سا0 لح 0 لا سواه 1 وده Od. ,تن 6 تیه
صفحه 19:
QOorlkPlow Goleeduler
۲ Wledly scheduler should exevuie o WworkPw coy oPier easuricy thot it wil
lenin اه ارات و و
یط ۳ سای ام اه مد اه یی امس هت( ۱
of the subtracsuniiows shoukt لت ی نا اه فا سا افو موه
موی سا
© Cuppore sysiews exerninny G, rd Ga de ot provide preparteoowt
مس موه ماه وق بو من سب
© Vie then possible to reach a ste where اه امه ها لهس
the other uberted. (Bots cadant thea be brought to the score state.
ار سا لاله له ری جا متام روط ©
۲ اه مب( sche by the scheduler te oot possible to yecrrdl, ood ty usury
fet to the desiqaer of the workPiow.
سا0 لح 0 لا سواه 1 مومه Od. ,تن 6 تیه
صفحه 20:
+ Qevovery oP a OorkPlow
سوت با اه رو ooours fa اه Goswe thot is o ۲
ماما ریت oo مور مه توت با موی
355
© Cohie-recwvery rouioes جمساجوموثما جمد جما جمصاوجت صا لججد oF the
سا هلر tive of ماج سا ماه و ما او
states oP rack جات ساره منطو اه عدبا .كاعم
Bondo? of ی تراسج له عون وا ی it spite of
ما
۲ من ما رم( اد recovery way lead to duplicate exeruiod
یو با لها رو ال بو تلم ام oot beter exerted.
© Coho: Persistent wessuieny sys
سا0 لح 0 لا سواه 1 مومه Od. ,تن 6 تیه
صفحه 21:
4 Qevovery oP a DorkPlow (Ova.)
ersten ویو او و اوه و و میسن queur ond
therePore ont lost fe case oP Pohure.
© Deserted ts etal is Ohopter (9 (Deirbuted Durbar)
© eh oo aed cows, tutes to he persisted wessuye queue whoever
مج werd ty be seo mut.
۲ Vhe persistent wees sysiew west wohe sure he wessuges yet delvered
eurcidly Pood gov P the trocesurion cous.
BV he weseup systew verds i reseod u wessue wheo the site recovers, Pie
wes oot hana ty have و وا لا
© Qessuges wet be bogged int stable storage of the reveiviey eu to detect oli
مج و تن رتور
سا0 لح 0 لا سواه 1 مومه Od. ,تن 6 تیه
صفحه 22:
صفحه 23:
مسر از
و سوه وا مور له وله تا ۲
توصممم او نا یاه وا لنچ و لح محر جوا
© Ok VO ود 1 اساسا و ی (10 wilisevoeds) bos oo
deoreused oto rote powpordble ty the toorewse tt processor sperds.
© Corde لو وا امه رون مب or uric the Sucve data tea,
resultcn to dota cooPticts thot reduce ePPerive porcietsa:
B® Oe coo reduce the deuree to whick o dotdbose syste is dist bowed by
صما the size oP the database buPPer.
سا0 لح 0 لا سواه 1 مومه @eedrwr Gyetre Oocowytr, Oe.
صفحه 24:
Oucr-Dewory Ounbwe
© Cowwernnd OF bt systews coo support wold wewories oP teas oP
تسام
اس اه رح data dlows Paster لو رس( ۲
تسا سا ۲
8 مایت مالسا ها بمپمورا irasurtion rate is hich.
۰
0 جطله صذ و موی of nlp اجه لا( سوه to
سويد chard)
© AB tke update rote Por woodPied buPPer blocks is hicfs, the dist cate
تام rote coud becowe o botleoect.
۶ ۳ the systew oreshes, ol oP wats wewory .لوصا جا
سا0 لح 0 لا سواه 1 مومه Od. ,تن 6 تیه
صفحه 25:
QavrODewory Ounbwe Opicwtzdiow
Do reduce space overheads, wokrwewory dotubuses cod usr stiruckires
wih potters crvssiay wuligie pages. la disk databases, the VO vst to
جوا walliple pages would be excessively high.
Oo weed ty pic buPPer pages te wewory before data are uovessed, sie
baPPer pages wil over be repkiced.
quen-processioy techaiques to wtikeize spare overhead - avoid موه(
ماه بو رد او exceed soto wewory
hope ecaicg oP pperdiccs suck os locktes cod hatches, 507 they: سوم
do ot bevowe botlewerks.
Opteize recovery dkpriheos, store paves rarely oped ty be writes out i
swoke space Por vier pos.
سا0 لح 0 لا سواه 1 مومه @eedrwr Gyetre Oocowytr, Oe.
صفحه 26:
Grow Ovwwi
Bleu! desteud oF perPorwiey culgut oP lrg records to stuble siorage us suv oS
inxeunivg & ready to cori, uci cl
© oy baer block ip Pull, or
© tremeartod hor bra wii subsea bro Pier bey recy to ocr
له رو له Resuls it Fewer ouipul operates per ا
porrespoedady ot higher throughput.
تس اه مت AWoawever, coi ore delayed vail a suPPiciealy harye 198
رای وا مج مها مت ما وا ما و او وا رل و
ieorewed respoure thre.
۲ با dehy uveptible to hith-perPorwoare trnsuriva systews store oy
buPPer blocks vill Pilup quickly.
سا0 لح 0 لا سواه 1 مومه Od. ,تن 6 تیه
صفحه 27:
حمل عامجا ناويد ی ما اس مه *
امد هن مشاه سا اجه وحطصمی
لت لاو P task i ut سوه رو لام صصه۵ - عمط Ward ©
د امد
© Creo عمط - The tush hus zero value Pit cowpleted oPier الیل سا
۶ ی deudiee ~ The tosh hos dhevinishtog value Pits coepleted Pier the deudtoe.
BD he wide votoore oP با موم Por read ood write من سوه dishes
ام مت شم | وروی Por ieoe-coustraced syste
۱
© Dats Por lochs, trexnsurivd uberis, ovdieuicg Por resvurces rewurr us probews
eve P dota is in waka wer
19 Qestqs of a rechioe spstew نمی امه thot puruyh provesskny power exists 7
sweet deudkoe wikout requiden) excessive hardware resvurves.
@eedrwr Gyetre Oocowytr, Oe. 00.0? ©Sbervehnts, Cork ced Cnakershe
صفحه 28:
جهاصوصهت ۳" مسق( boa
4
techotques deat words امه وی لو
wel wheo user toterantion te required:
Loog duection! Design edt sesso ore very kn
Cxpoewe oP eoowtied cts! (B.<., part urckte to a deskar
سس supper portal rolbacts
crash state shod be restored eved Por pettorbe من ترطف سوه
rented dota, so user work ts ot bot.
۲ PerPorwaws: Post respousr tive is essed so wer fee is ot
20.00
اور
|۱۳ Gyetre Oocowytr, Oe.
صفحه 29:
Traswirw یپ مور
ero لت وب ویو
dexnie dacbose operdioas (readiurte) of a lowest level. ©
BAB ianexnton Babs, ood) anive short-huratog trexeurtoces cbr.
سمل تسه cay وه مور وت ما سم ۲
hove recovered.
© Ve ef hited worngewed of Irop-durdicg wats, ood the posstiliy oP aborts.
© Deed theruives ty wots wed uberis; hercaive techoiques wet eure
00 ,اوه شوه الجكلانب ججعوامج
سا0 لح 0 لا سواه 1 مومه Gyetre Oocowytr, Oe. 00
صفحه 30:
Cowwrewy Opdrol
© ,اوه مات ون
۱ depeuds on the sper Pir coeistewy coesirais Por the
وال
© Conetiess depeuds va he properties oP opersiizas perPorwed by:
puck او
© Ose dotcbose cowsisteuy coustraicis us te spit he dtabase fair
ها موه رو موجه مات من ماهلا wocaged sepordicl.
© Pred لا و و reud od write os Puadoeectdl low-level
ترجه تمه لو هون ovoid ty del wis thew.
سا0 لح 0 لا سواه 1 مومه Od. ,تن 6 تیه
صفحه 31:
read(B)
B:=B-10
write(B)
read(A)
A:=A+10
write(A)
©Sbervehnts, Cork ced Cnakershe
read(A)
۸ :< ۸ - 0
write(A)
read(B)
B:=B+50
write (B)
ممه
00 Gyetre Oocowytr, Oe.
صفحه 32:
+ QOesed ond Duilevel Prawn
© OO vested مج ابرطلی ب Tip represecied by o set
P= {by boy oy 1) OP سای ood a port order Poa ۰
BO sbreneuios fi Poy obort without Porctay To bon.
Desert eras eer vee ety ال سك 0 2
۳ مس با | سس له بو ما مه بط ot
امه( ۰ و با ,مه( و0 ay ol cbort (or rece
(مسو ۵
۱
سم بط و بو raph, hea fj eaet ot be ia he trowive oboe
PE.
سا0 لح 0 لا سواه 1 مومه @eedrwr Gyetre Oocowytr, Oe.
صفحه 33:
+ Qevied aad Dullevel Trawastow (Ova)
© Gibesunives con thewerbes be cested/ultlevel troasuriion.
© bowest level oP cestie: stredacd read oad write ppercivas.
© este coo oredr higher-level pperuicas thot way eohoue powurrewy.
BD pee oF vested تمس اسان
© Ouhbvel rxeuston! subexeniva oP Ps perwited i releuse bohs va
risa,
© Gags: walievel lbocpduraion tnneavia.
© Dested لاه مامتا میت by u subinneuios | oP Pane
رخات ماو مه با موجه راو
سا0 لح 0 لا سواه 1 مومه Gyetre Oocowytr, Oe. ۱۳|
صفحه 34:
و و مج +
0
ویو و و بو
«۰ 1 سس of
۱ 1 له ات SO Prow @
١ ات رن ake SO و 0
۱ مر لو مه مر مس را perPore
سیم و و سور
© Py cows oF
thick subirare: (D Brow @
wwhick ackts 40 و ©
Op orderkn & sper Ped oa abinne aris) coy ExeTiod د سس
سوه rem.
Posy
۰
‘v0
سا0 لح 0 لا سواه 1 مومه Od. ,تن 6 تیه
صفحه 35:
صدصامه هده !1 بده 5م000 +
ام ماس جات ال سس را من ول وا رما ۱
لاه لصو
۱
۲ علانب ,قاطا موم ماه ین
,رم سا لت ان 1 موه 7... whick reserves
rectd cars, ond 7), whick اه رم
© Note maces he resent.
© ححص oF edo ol oP, the Paine of او وا by
diesen he od hotel reservation ood smokin 0 ew oa.
© Roques er of euro of the Poked traearton.
سا0 لح 0 لا سواه 1 مومه Od. ,تن 6 تیه
صفحه 36:
حصحها؟ نموم +
۲ مرو فصو و ما لا و crashes, we ant boy wot oly
راد با وا وم but doe و و مد موه امس و اه
یر
۱
ای bok of ond ce سوه وا یط روط
Ber دسجي 7 rechten he overhead of eerie he recovercbliy of kare
comin!
© Opercticn loci. Ouly the operaiva perPorwed oo the date teu oad the cata
few weve ore sipred ia the log.
© Locngen) ord shadow pages. Ose baggy Prow sul dota ews; use shadows
pasta Por forge dota tec. Ouly wodPied pages ord to be stored ta duplicate.
مومه Od. ,تن 6 تیه
صفحه 37:
Trawwiod Qacanewedt ta Dulidacbuse
Opsews
© Trosuios woongewed is cowphoded ft wulidctabase systews berause of the
وه که موجه
© Cbd CCL دهع اما امد 000 (bche or reewed ot he
pend); lochs set oe a result of a موم ام ore released may whe tt
emer ratte tere
سوه لا مه
هط لمج سوت موی باه رو وله باس ©
corres) voir sche وین
CPL اوه سا ول هم سس ۵ any جد و ١
تست ۲
عه ,اجه مسج اه prod very bow level ©
رو مها ee ©
@eedrwr Gyetre Oocowytr, Oe. 000?
صفحه 38:
مسر دوه () رو زور جر ]7
۱ اوه را ore executed by ack lord OBOG, vuside oF he DOGG
اه مود
© lbbd موی ore exevuied under wultdutazase orci,
وحم طايه و امس وی Loed nicwwy - bod OBOGs cerca ©
over boot ای و الم سا اجه شوه مها مان
9
سوه 000)(62) ما عمجت و اولح سوه او روج من سا
ts sertatzable
© raver oF bookie, DOO cnet be uble to quard سح سا سنوی
© eed uddiiogd werhuniows to eusure qobd seridtzabhiy:
سا0 لح 0 لا سواه 1 مومه Od. ,تن 6 تیه
صفحه 39:
ات۵ ۷) امولمی؟
۲ 00۵0 لوا سا پوت اوه اما عصصی rocsurtivas, tactuday those thot
re pat oF سس ال و
© Uke ی رتاو ی ان yobal trocsurioas نس واه
the ordertogs tacuced by lord tracructives.
18 را dees wt eer dobdl serichzobiliy, however, fico PUP require wenis
Por strvay correvtiess.
0. reserve cousisteuny us speed by a yued set oP موی
©. Guonnier thot the set oP dota ews read by euck tracsunivg is ooasisteot
© @bbdhredd proboot : Glbdl سوه coo read, but ot update, focal dott
tecs; local مس do ont have مه و و( ول ماو ما میت
لت اما مورا وه رون otal dota teas.
سا0 لح 0 لا سواه 1 مومه Od. ,تن 6 تیه
صفحه 40:
+ Two-level Owridirdbliy (Oo)
© Locotredd proteont : boo trrasunious have read uovess to سا رل لام
dh coves to loool data by علطم
19 0 trowsuntiva hos 0 voke depeudeury iP the value thot varies too dot tec ot
woe site depeads لو زا سا و من Por a date tec عاك اه مس
© Por sony correchess: (Do rresuniiva way hove 0 vole بط حول
© @bbdhreudrtelbrdedd proton); Lord trowsuntives hove read ures tr
ای لا وی موه الما رل ماما arte: ol data;
.عمجا دل أجامل اجه اما متا موی موی( ۲
hove vole depeudteuy. ۱
سا0 لح 0 لا سواه 1 مومه @eedrwr Gyetre Oocowytr, Oe.
صفحه 41:
راب6 طط)
© vec Pw مه & woloble oowerciag he structure oP the various
nue oid schewes, 0 very resiricive protocol trot eurures
vertaizubhiy te ovalobe.
aie اجه مه مس obo رما سس ای
موه ۲
3321
1 95 صلب لطس )17, 08 ( exces PTs wae ot vie G,,
سوه ای مد جدمممت جاورسن_ و صصص خا لجسف جه جا با طلعصاد جد ادحاطا)
00 6 ,تن Od.
صفحه 42:
راب6 ت09 پوت +
Be Bork ote ©, hos o spent chia few, ole thet
۱ و هم سم زوس G, wrtes 7 te tobet ot ote G,
© Gxsurs yobd trowsuctives ore sertdized of puck site, reqardess oF fovdl
مج coil wethod, sv loop os the wethod له اما هی
۲ من منم لا decides serial orderieg oP yobd tracsuctions by
اب وا لس بآم هی tickets ore accessed
18 4 Wowever, cbove proiocol results to bw corey betweed soba
سور
|۱۳ Gyetre Oocowytr, Oe. 00.40 ©Sbervehnts, Cork ced Cnakershe
صفحه 43:
: 8
Gad oP Okaper
صفحه 44:
+ Ovck bevels رون
© Ose dernive wives oP coceisteary thot dy oo وا اوه عمج
perfor.
۲ ریپ mrettewy woids vesrutoy oborts wihoul vevessuny ecurtery
رابود
۱ bochie, G-bohks woy be releused of coy tee, ood hohe
swe be aquired of cop ioe.
له سوه یه vier مسا سا ی لا سا بل ©
سا0 لح 0 لا سواه 1 مومو Gyetre Oocowytr, Oe. ۱۳|
صفحه 45:
+ لو Oohedue wk OrgeeTue Orwstray
schedule wih dewrrrtor cousisteuy (Pipe OO.S) where T., اوه(
417 با توص reads the due P GQ bePore ood oPter thot
سا0 لح 0 لا سواه 1 مومه @eedrwr Gyetre Oocowytr, Oe.
صفحه 46:
Cursor Oinbiiy
۲ Pow oP لب رم موب Por progres writes ta
: reorhoriccied hroguages (e.y., Pascal, O, Ovbrl,
ever purpose,
PLM, Porm).
Bl Roker thaw bohion the eutire rebtiog, cursor هجا مسحب تاماك
© Dhe tuple hot & curredily betay processed by the tierciza is locked i
shared wode.
© @oy wodhied tuples ore locked to exchusive wode nil the trocrurtiva
pois.
رحص وه مه اه جمدم و و Osed oo hel ovessed retiives ©
تسه رنه طممه چرت و له با ات Ose ©
Od. 0040 ©Sbervehnts, Cork ced Cnakershe ,تن 6 تیه
Chapter 24: Advanced Transaction Processing
Transaction-Processing Monitors
Transactional Workflows
High-Performance Transaction Systems
Main memory databases
Real-Time Transaction Systems
Long-Duration Transactions
Transaction management in multidatabase systems
Database System Concepts, 5th Ed.
25.1
©Silberschatz, Korth and Sudarshan
Transaction Processing Monitors
TP monitors initially developed as multithreaded servers to support large numbers
of terminals from a single process.
Provide infrastructure for building and administering complex transaction
processing systems with a large number of clients and multiple servers.
Provide services such as:
Presentation facilities to simplify creating user interfaces
Persistent queuing of client requests and server responses
Routing of client messages to servers
Coordination of two-phase commit when transactions access multiple servers.
Some commercial TP monitors: CICS from IBM, Pathway from Tandem,
Top End from NCR, and Encina from Transarc
Database System Concepts, 5th Ed.
25.2
©Silberschatz, Korth and Sudarshan
TP Monitor Architectures
Database System Concepts, 5th Ed.
25.3
©Silberschatz, Korth and Sudarshan
TP Monitor Architectures (Cont.)
Process per client model - instead of individual login session per terminal,
server process communicates with the terminal, handles authentication, and
executes actions.
Memory requirements are high
Multitasking- high CPU overhead for context switching between
processes
Single process model - all remote terminals connect to a single server
process.
Used in client-server environments
Server process is multi-threaded; low cost for thread switching
No protection between applications
Not suited for parallel or distributed databases
Database System Concepts, 5th Ed.
25.4
©Silberschatz, Korth and Sudarshan
TP Monitor Architectures (Cont.)
Many-server single-router model - multiple application server processes
access a common database; clients communicate with the application
through a single communication process that routes requests.
Independent server processes for multiple applications
Multithread server process
Run on parallel or distributed database
Many server many-router model - multiple processes communicate with
clients.
Client communication processes interact with router processes that
route their requests to the appropriate server.
Controller process starts up and supervises other processes.
Database System Concepts, 5th Ed.
25.5
©Silberschatz, Korth and Sudarshan
Detailed Structure of a TP Monitor
Database System Concepts, 5th Ed.
25.6
©Silberschatz, Korth and Sudarshan
Detailed Structure of a TP Monitor
Queue manager handles incoming messages
Some queue managers provide persistent or durable message queueing
contents of queue are safe even if systems fails.
Durable queueing of outgoing messages is important
application server writes message to durable queue as part of a
transaction
once the transaction commits, the TP monitor guarantees message is
eventually delevered, regardless of crashes.
ACID properties are thus provided even for messages sent outside the
database
Many TP monitors provide locking, logging and recovery services, to enable
application servers to implement ACID properties by themselves.
Database System Concepts, 5th Ed.
25.7
©Silberschatz, Korth and Sudarshan
Application Coordination Using TP Monitors
A TP monitor treats each subsystem as a resource manager that provides
transactional access to some set of resources.
The interface between the TP monitor and the resource manager is defined by
a set of transaction primitives
The resource manager interface is defined by the X/Open Distributed
Transaction Processing standard.
TP monitor systems provide a transactional remote procedure call (transactional
RPC) interface to their service
Transactional RPC provides calls to enclose a series of RPC calls within a
transaction.
Updates performed by an RPC are carried out within the scope of the
transaction, and can be rolled back if there is any failure.
Database System Concepts, 5th Ed.
25.8
©Silberschatz, Korth and Sudarshan
Workflow Systems
Database System Concepts
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
9
Transactional Workflows
Workflows are activities that involve the coordinated execution of multiple tasks
performed by different processing entities.
With the growth of networks, and the existence of multiple autonomous database
systems, workflows provide a convenient way of carrying out tasks that involve
multiple systems.
Example of a workflow delivery of an email message, which goes through
several mails systems to reach destination.
Each mailer performs a tasks: forwarding of the mail to the next mailer.
If a mailer cannot deliver mail, failure must be handled semantically (delivery
failure message).
Workflows usually involve humans: e.g. loan processing, or purchase order
processing.
Database System Concepts, 5th Ed.
25.10
©Silberschatz, Korth and Sudarshan
Examples of Workflows
Database System Concepts, 5th Ed.
25.11
©Silberschatz, Korth and Sudarshan
Loan Processing Workflow
In the past, workflows were handled by creating and forwarding paper forms
Computerized workflows aim to automate many of the tasks. But the humans
still play role e.g. in approving loans.
Database System Concepts, 5th Ed.
25.12
©Silberschatz, Korth and Sudarshan
Transactional Workflows
Must address following issues to computerize a workflow.
Specification of workflows - detailing the tasks that must be carried out and
defining the execution requirements.
Execution of workflows - execute transactions specified in the workflow while
also providing traditional database safeguards related to the correctness of
computations, data integrity, and durability.
E.g.: Loan application should not get lost even if system fails.
Extend transaction concepts to the context of workflows.
State of a workflow - consists of the collection of states of its constituent tasks, and the
states (i.e. values) of all variables in the execution plan.
Database System Concepts, 5th Ed.
25.13
©Silberschatz, Korth and Sudarshan
Workflow Specification
Static specification of task coordination:
Tasks and dependencies among them are defined before the execution of the
workflow starts.
Can establish preconditions for execution of each task: tasks are executed only
when their preconditions are satisfied.
Defined preconditions through dependencies:
Execution states of other tasks.
“task ti cannot start until task tj has ended”
Output values of other tasks.
“task ti can start if task tj returns a value greater than 25”
External variables, that are modified by external events.
“task ti must be started within 24 hours of the completion of task tj”
Database System Concepts, 5th Ed.
25.14
©Silberschatz, Korth and Sudarshan
Workflow Specification (Cont.)
Dynamic task coordination
E.g. Electronic mail routing system in which the text to be schedule for a given
mail message depends on the destination address and on which intermediate
routers are functioning.
Database System Concepts, 5th Ed.
25.15
©Silberschatz, Korth and Sudarshan
Failure-Automicity Requirements
Usual ACID transactional requirements are too strong/unimplementable for
workflow applications.
However, workflows must satisfy some limited transactional properties that
guarantee a process is not left in an inconsistent state.
Acceptable termination states - every execution of a workflow will terminate in
a state that satisfies the failure-atomicity requirements defined by the designer.
Committed - objectives of a workflow have been achieved.
Aborted - valid termination state in which a workflow has failed to achieve
its objectives.
A workflow must reach an acceptable termination state even in the presence
of system failures.
Database System Concepts, 5th Ed.
25.16
©Silberschatz, Korth and Sudarshan
Execution of Workflows
Workflow management systems include:
Scheduler - program that process workflows by submitting various tasks for
execution, monitoring various events, and evaluation conditions related to intertask
dependencies
Task agents - control the execution of a task by a processing entity.
Mechanism to query to state of the workflow system.
Database System Concepts, 5th Ed.
25.17
©Silberschatz, Korth and Sudarshan
Workflow Management System Architectures
Centralized - a single scheduler schedules the tasks for all concurrently executing
workflows.
used in workflow systems where the data is stored in a central database.
easier to keep track of the state of a workflow.
Partially distributed - has one (instance of a ) scheduler for each workflow.
Fully distributed - has no scheduler, but the task agents coordinate their execution by
communicating with each other to satisfy task dependencies and other workflow
execution requirements.
used in simplest workflow execution systems
based on electronic mail
Database System Concepts, 5th Ed.
25.18
©Silberschatz, Korth and Sudarshan
Workflow Scheduler
Ideally scheduler should execute a workflow only after ensuring that it will
terminate in an acceptable state.
Consider a workflow consisting of two tasks S1 and S2. Let the failureatomicity requirement be that either both or neither of the subtransactions should
be committed.
Suppose systems executing S1 and S2 do not provide prepared-to-commit
states and S1 or S2 do not have compensating transactions.
It is then possible to reach a state where one subtransaction is committed and
the other aborted. Both cannot then be brought to the same state.
Workflow specification is unsafe, and should be rejected.
Determination of safety by the scheduler is not possible in general, and is usually
left to the designer of the workflow.
Database System Concepts, 5th Ed.
25.19
©Silberschatz, Korth and Sudarshan
Recovery of a Workflow
Ensure that is a failure occurs in any of the workflow-processing
components, the workflow eventually reaches an acceptable termination
state.
Failure-recovery routines need to restore the state information of the
scheduler at the time of failure, including the information about the execution
states of each task. Log status information on stable storage.
Handoff of tasks between agents should occur exactly once in spite of
failure.
Problem: Repeating handoff on recovery may lead to duplicate execution
of task; not repeating handoff may lead to task not being executed.
Solution: Persistent messaging systems
Database System Concepts, 5th Ed.
25.20
©Silberschatz, Korth and Sudarshan
Recovery of a Workflow (Cont.)
Persistent messages: messages are stored in permanent message queue and
therefore not lost in case of failure.
Described in detail in Chapter 19 (Distributed Databases)
Before an agent commits, it writes to the persistent message queue whatever
messages need to be sent out.
The persistent message system must make sure the messages get delivered
eventually if and only if the transaction commits.
The message system needs to resend a message when the site recovers, if the
message is not known to have reached its destination.
Messages must be logged in stable storage at the receiving end to detect multiple
receipts of a message.
Database System Concepts, 5th Ed.
25.21
©Silberschatz, Korth and Sudarshan
High Performance
Transaction Systems
Database System Concepts
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
22
High-Performance Transaction Systems
High-performance hardware and parallelism help improve the rate of
transaction processing, but are insufficient to obtain high performance:
Disk I/O is a bottleneck — I/O time (10 milliseconds) has no
decreased at a rate comparable to the increase in processor speeds.
Parallel transactions may attempt to read or write the same data item,
resulting in data conflicts that reduce effective parallelism
We can reduce the degree to which a database system is disk bound by
increasing the size of the database buffer.
Database System Concepts, 5th Ed.
25.23
©Silberschatz, Korth and Sudarshan
Main-Memory Database
Commercial 64-bit systems can support main memories of tens of
gigabytes.
Memory resident data allows faster processing of transactions.
Disk-related limitations:
Logging is a bottleneck when transaction rate is high.
Use group-commit to reduce number of output operations (Will study two
slides ahead.)
If the update rate for modified buffer blocks is high, the disk datatransfer rate could become a bottleneck.
If the system crashes, all of main memory is lost.
Database System Concepts, 5th Ed.
25.24
©Silberschatz, Korth and Sudarshan
Main-Memory Database Optimizations
To reduce space overheads, main-memory databases can use structures
with pointers crossing multiple pages. In disk databases, the I/O cost to
traverse multiple pages would be excessively high.
No need to pin buffer pages in memory before data are accessed, since
buffer pages will never be replaced.
Design query-processing techniques to minimize space overhead - avoid
exceeding main memory limits during query evaluation.
Improve implementation of operations such as locking and latching, so they
do not become bottlenecks.
Optimize recovery algorithms, since pages rarely need to be written out to
make space for other pages.
Database System Concepts, 5th Ed.
25.25
©Silberschatz, Korth and Sudarshan
Group Commit
Idea: Instead of performing output of log records to stable storage as soon as a
transaction is ready to commit, wait until
log buffer block is full, or
a transaction has been waiting sufficiently long after being ready to commit
Results in fewer output operations per committed transaction, and
correspondingly a higher throughput.
However, commits are delayed until a sufficiently large group of transactions
are ready to commit, or a transaction has been waiting long enough-leads to slightly
increased response time.
Above delay acceptable in high-performance transaction systems since log
buffer blocks will fill up quickly.
Database System Concepts, 5th Ed.
25.26
©Silberschatz, Korth and Sudarshan
Real-Time Transaction Systems
In systems with real-time constraints, correctness of execution involves both database
consistency and the satisfaction of deadlines.
Hard deadline – Serious problems may occur if task is not completed within
deadline
Firm deadline - The task has zero value if it completed after the deadline.
Soft deadline - The task has diminishing value if it is completed after the deadline.
The wide variance of execution times for read and write operations on disks
complicates the transaction management problem for time-constrained systems
main-memory databases are thus often used
Waits for locks, transaction aborts, contention for resources remain as problems
even if data is in main memory
Design of a real-time system involves ensuring that enough processing power exists to
meet deadline without requiring excessive hardware resources.
Database System Concepts, 5th Ed.
25.27
©Silberschatz, Korth and Sudarshan
Long Duration Transactions
Traditional concurrency control techniques do not work
well when user interaction is required:
Long duration: Design edit sessions are very long
Exposure of uncommitted data: E.g., partial update to a design
Subtasks: support partial rollback
Recoverability: on crash state should be restored even for yet-to-be
committed data, so user work is not lost.
Performance: fast response time is essential so user time is not
wasted.
Database System Concepts, 5th Ed.
25.28
©Silberschatz, Korth and Sudarshan
Long-Duration Transactions
Represent as a nested transaction
atomic database operations (read/write) at a lowest level.
If transaction fails, only active short-duration transactions abort.
Active long-duration transactions resume once any short duration transactions
have recovered.
The efficient management of long-duration waits, and the possibility of aborts.
Need alternatives to waits and aborts; alternative techniques must ensure
correctness without requiring serializability.
Database System Concepts, 5th Ed.
25.29
©Silberschatz, Korth and Sudarshan
Concurrency Control
Correctness without serializability:
Correctness depends on the specific consistency constraints for the
databases.
Correctness depends on the properties of operations performed by
each transaction.
Use database consistency constraints as to split the database into
subdatabases on which concurrency can be managed separately.
Treat some operations besides read and write as fundamental low-level
operations and extend concurrency control to deal with them.
Database System Concepts, 5th Ed.
25.30
©Silberschatz, Korth and Sudarshan
Concurrency Control (Cont.)
A non-conflict-serializable schedule that
preserves the sum of A + B
Database System Concepts, 5th Ed.
25.31
©Silberschatz, Korth and Sudarshan
Nested and Multilevel Transactions
A nested or multilevel transaction T is represented by a set
T = {t1, t2, ..., tn} of subtransactions and a partial order P on T.
A subtransaction ti in T may abort without forcing T to abort.
Instead, T may either restart ti, or simply choose not to run ti.
If ti commits, this action does not make ti, permanent (unlike the situation in
Chapter 15). Instead, ti, commits to T, and may still abort (or require
compensation) if T aborts.
An execution of T must not violate the partial order P, i.e., if an edge ti ti
appears in the precedence graph, then ti ti must not be in the transitive closure
of P.
Database System Concepts, 5th Ed.
25.32
©Silberschatz, Korth and Sudarshan
Nested and Multilevel Transactions (Cont.)
Subtransactions can themselves be nested/multilevel transactions.
Lowest level of nesting: standard read and write operations.
Nesting can create higher-level operations that may enhance concurrency.
Types of nested/ multilevel transactions:
Multilevel transaction: subtransaction of T is permitted to release locks on
completion.
Saga: multilevel long-duration transaction.
Nested transaction: locks held by a subtransaction ti of T are
automatically assign to T on completion of ti.
Database System Concepts, 5th Ed.
25.33
©Silberschatz, Korth and Sudarshan
Example of Nesting
Rewrite transaction T1 using subtransactions Ta and Tb that perform
increment or decrement operations:
T1,1, which subtracts 50 from A
T1,2, which adds 50 to B
Rewrite transaction T2 using subtransactions Tc and Td that perform
increment or decrement operations:
T1 consists of
T2 consists of
T2,1, which subtracts 10 from B
T2,2, which adds 10 to A
No ordering is specified on subtransactions; any execution generates a
correct result.
Database System Concepts, 5th Ed.
25.34
©Silberschatz, Korth and Sudarshan
Compensating Transactions
Alternative to undo operation; compensating transactions deal with the problem of
cascading rollbacks.
Instead of undoing all changes made by the failed transaction, action is taken to
“compensate” for the failure.
Consider a long-duration transaction Ti representing a travel reservation, with
subtransactions Ti,1, which makes airline reservations, Ti,2 which reserves
rental cars, and Ti,3 which reserves a hotel room.
Hotel cancels the reservation.
Instead of undoing all of Ti, the failure of Ti,3 is compensated for by
deleting the old hotel reservation and making a new one.
Requires use of semantics of the failed transaction.
Database System Concepts, 5th Ed.
25.35
©Silberschatz, Korth and Sudarshan
Implementation Issues
For long-duration transactions to survive system crashes, we must log not only
changes to the database, but also changes to internal system data pertaining to these
transactions.
Logging of updates is made more complex by physically large data items (CAD
design, document text); undesirable to store both old and new values.
Two approaches to reducing the overhead of ensuring the recoverability of large
data items:
Operation logging. Only the operation performed on the data item and the dataitem name are stored in the log.
Logging and shadow paging. Use logging from small data items; use shadow
paging for large data items. Only modified pages need to be stored in duplicate.
Database System Concepts, 5th Ed.
25.36
©Silberschatz, Korth and Sudarshan
Transaction Management in Multidatabase
Systems
Transaction management is complicated in multidatabase systems because of the
assumption of autonomy
Global 2PL -each local site uses a strict 2PL (locks are released at the
end); locks set as a result of a global transaction are released only when that
transaction reaches the end.
Due to autonomy requirements, sites cannot cooperate and execute a
common concurrency control scheme
Guarantees global serializability
E.g. no way to ensure that all databases follow strict 2PL
Solutions:
provide very low level of concurrent execution, or
use weaker levels of consistency
Database System Concepts, 5th Ed.
25.37
©Silberschatz, Korth and Sudarshan
Transaction Management
Local transactions are executed by each local DBMS, outside of the MDBS
system control.
Global transactions are executed under multidatabase control.
Local autonomy - local DBMSs cannot communicate directly to synchronize
global transaction execution and the multidatabase has no control over local
transaction execution.
local concurrency control scheme needed to ensure that DBMS’s schedule
is serializable
in case of locking, DBMS must be able to guard against local deadlocks.
need additional mechanisms to ensure global serializability
Database System Concepts, 5th Ed.
25.38
©Silberschatz, Korth and Sudarshan
Two-Level Serializability
DBMS ensures local serializability among its local transactions, including those that
are part of a global transaction.
The multidatabase ensures serializability among global transactions alone- ignoring
the orderings induced by local transactions.
2LSR does not ensure global serializability, however, it can fulfill requirements
for strong correctness.
1. Preserve consistency as specified by a given set of constraints
2. Guarantee that the set of data items read by each transaction is consistent
Global-read protocol : Global transactions can read, but not update, local data
items; local transactions do not have access to global data. There are no
consistency constraints between local and global data items.
Database System Concepts, 5th Ed.
25.39
©Silberschatz, Korth and Sudarshan
Two-Level Serializability (Cont.)
Local-read protocol : Local transactions have read access to global data; disallows
all access to local data by global transactions.
A transaction has a value dependency if the value that it writes to a data item at
one site depends on a value that it read for a data item on another site.
For strong correctness: No transaction may have a value dependency.
Global-read-write/local-read protocol; Local transactions have read access to
global data; global transactions may read and write all data;
No consistency constraints between local and global data items.
No transaction may have value dependency.
Database System Concepts, 5th Ed.
25.40
©Silberschatz, Korth and Sudarshan
Global Serializability
Even if no information is available concerning the structure of the various
concurrency control schemes, a very restrictive protocol that ensures
serializability is available.
Transaction-graph : a graph with vertices being global transaction names and site
names.
An undirected edge (Ti, Sk) exists if Ti is active at site Sk.
Global serializability is assured if transaction-graph contains no undirected cycles.
Database System Concepts, 5th Ed.
25.41
©Silberschatz, Korth and Sudarshan
Ensuring Global Serializability
Each site Si has a special data item, called ticket
Every transaction Tj that runs at site Sk writes to the ticket at site Si
Ensures global transactions are serialized at each site, regardless of local
concurrency control method, so long as the method guarantees local serializability
Global transaction manager decides serial ordering of global transactions by
controlling order in which tickets are accessed
However, above protocol results in low concurrency between global
transactions.
Database System Concepts, 5th Ed.
25.42
©Silberschatz, Korth and Sudarshan
End of Chapter
Database System Concepts
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
43
Weak Levels Consistency
Use alternative notions of consistency that do not ensure serializability, to improve
performance.
Degree-two consistency avoids cascading aborts without necessarily ensuring
serializability.
Unlike two-phase locking, S-locks may be released at any time, and licks
may be acquired at any time.
X-locks be released until the transaction either commits or aborts.
Database System Concepts, 5th Ed.
25.44
©Silberschatz, Korth and Sudarshan
Example Schedule with Degree-Two Consistency
Nonserializable schedule with degree-two consistency (Figure 20.5) where T3
reads the value if Q before and after that value is written by T4.
T3
T4
lock-S (Q)
read (Q)
unlock (Q)
lock-X (Q)
read (Q)
write (Q)
unlock (Q)
lock-S (Q)
read (Q)
unlock (Q)
Database System Concepts, 5th Ed.
25.45
©Silberschatz, Korth and Sudarshan
Cursor Stability
Form of degree-two consistency designed for programs written in
general-purpose, record-oriented languages (e.g., Pascal, C, Cobol,
PL/I, Fortran).
Rather than locking the entire relation, cursor stability ensures that
The tuple that is currently being processed by the iteration is locked in
shared mode.
Any modified tuples are locked in exclusive mode until the transaction
commits.
Used on heavily accessed relations as a means of increasing concurrency
and improving system performance.
Use is limited to specialized situations with simple consistency constraints.
Database System Concepts, 5th Ed.
25.46
©Silberschatz, Korth and Sudarshan