ریاضیعلوم پایه

Fuzzy Inference systems

صفحه 1:
‎Gpstews‏ م۳( رس ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎

صفحه 2:
© The Architecture of Fuzzy Inference Systems ° Fuzzy Models: Mamdani Fuzzy models Sugeno Fuzzy Models Tsukamoto Fuzzy models © Partition Styles for Fuzzy Models

صفحه 3:
‎Gpstews‏ م۳( رس ‎۱۳ ‏ل‎ ‏روص"‎ IePereue Gystews

صفحه 4:

صفحه 5:

صفحه 6:
Converts thecrispinput toa linguistic variableusing themembership functions storedin the fuzzy knowledge base.

صفحه 7:
Converts thecrispinput toa linguistic variableusing themembership functions storedin the fuzzy knowledge base.

صفحه 8:

صفحه 9:
Converts thefuzzy output of theinference engine tocrispusing membership functions analogous to the ones used by the fuzzifier.

صفحه 10:
مدب ال رامع را ره ,مرن عک دموا رما موم ۲6۵ 111 ‎implementsa nonlinear mapping fromitsinput space to‏ ‎output space.‏ ۳ = aggregator| defuzzifier

صفحه 11:
‎Gpstews‏ م۳( رس ‏اكد دوه( ‎(Puzgp wodels‏

صفحه 12:
® Original Goal:Controfasteamengine & boiler combination by a set of Linguistic control rules obtainedfromexperienced human operators.

صفحه 13:
Max-Min Composition isused. The Reusvuny Grokewe

صفحه 14:
0ع اک که موه ‎Max-Product‏ The Reusvuny Grokewe

صفحه 15:
© Converts thefuzzy output of theinferenceengine to crispusing membership functions analogous tothe ones used by thefuzzifier. © Fivecommonly used defuzzifying methods: Centroidofarea (COA) Bisector ofarea (BOA) Mean of maximum (MOM) SmalCest of maximum (SOM) Largest of maximum (LOM)

صفحه 16:
smallest of max. centroid of area bisecter of area largest of max. mean of max.

صفحه 17:
2 هار 2)< 2 ۲82 2 ۲۳۳۳۳ > ‏مش وير سمو‎ 5-5 bisecter of area \— mean of max. = - fuade= fund, = Zo04

صفحه 18:
Ra if Xis small then Vis small R2iIf Xismediumthen Yismed Railf XisCargethen Vislarge Gxavple ‏ع ی‎ Y= output € [0, 10] Max-min compositionandcentroiddefuzzification wereused. Overall input-output curve

صفحه 19:
‘Ra1:if Xissmall & Vissmall then Zis negative! ‘RaiIf Xissmall & YisCarge then Zis negatives Ratlf Xislarge& Yis small then Zis positive sm ‏تنم‎ Xislarge& Vislargethen Zispositivela X,Y, Ze[-5, 5] Max-min compositionandcentroiddefuzzification wereused. Overall input-output curve 1 موس

صفحه 20:
‎Gpstews‏ م۳( رس ‎Guyew ‎(Puzay Oodels

صفحه 21:
© Alsoknownas TSK fuzzy model ~ Takagi, Sugeno & Kang, 7985 * Goal: Generation of fuzzy rules froma giveninput-output dataset.

صفحه 22:
‎Ques oP TGC Oodet‏ رد۳ ‎If xis dyis nz = f(x, y) ‎Fuzzy Sets Crisp Function ‎fx, yisvery oftena polynomial functionw.r.t. x ‎andy,

صفحه 23:
2: ‏)ام که ]ام و2‎ ۲0۵02 < -x +y +1 R2:if Xissmalland Yislargethen z = -y +3 R3:if XisCargeand Yissmall then Z = -x +3 R4:if Xislargeand Yislargethenz=x+t+yt2

صفحه 24:
+ لاو + رم > و2 ۲ + لا + لايم - و2 weighted average| W424+WeZ2 ۷, ze

صفحه 25:
RaiIfXissmall then Y= 0.1X+ 6.4 22:11 Xismediumthen Y= -0.5X + 4 Railf Xislargethen Y = X- 2 X=input €[-10, 10] (0) Overall ¥O Curve far Crisp Rules (a) Antecedent MFs for Crisp Rules 5 medium ‏اقا‎ ‎08 { £08 { eo ۱ 2 ‏اوه‎ | 0 1 2 3 80 6 10 10 3 a 3 18 2 x

صفحه 26:
RaiIfXissmall then Y= 0.1X+ 6.4 22:11 Xismediumthen Y= -0.5X + 4 Railf Xislargethen Y = X- 2 X=input > ]-10, 10[ (0) Overall VO Curve for Fuzzy Rules (c) Antecedent MFs for Fuzzy Rules small medium large 5 مصاع 3 8 2 3 4> 208 بو 2 2 02 7 ip aes 8 oh Ifwe have smoothmembership functions (fuzzy rules) the overall input-output curve becomes a smoother one.

صفحه 27:
‘Xis small and Yissmall then z ‘Raxif Xissmalland YisCarge then ‘Rarif XisCargeand Yissmall then ‏رام‎ Xislargeand Yislargethen X, YeL5, 5] “x+y 41 “y +3 =-x43 xty+2

صفحه 28:
‎Gpstews‏ م۳( رس ‎Tsuboi ‎(Puzay wodels

صفحه 29:
The consequent of eachfuzzy if-then- ruleis represented by a fuzzy set witha monotonical MF.

صفحه 30:
weighted average Wy * We

صفحه 31:
Ra: If Xissmall then Yis C, R2:If Xismediumthen Vis C, R3:if XisCargethen Yis C; سم اسهم پم اجه ‎osm‏ تست و ‎oo‏ ۰ ۲۳۰ ‎Gos, ۲ 1 doe‏ ‎Bos \ Fos‏ ‎soe‏ ۱ 202 ذخام 3 5 5 صب ۳ 0 1 ا ‘ 2

صفحه 32:
‎Gpstews‏ م۳( رس ‎(Puntitiocr Otptes Por Puzay Oodels

صفحه 33:
If <antecedence> then <consequence>. ——— ye Thesamestylefor Different stylesfor Mamdani Fuzzy models Mamdani Fuzzy models Sugeno Fuzzy Models * Sugeno Fuzzy Models * Tsukamoto Fuzzy models * Tsukamoto Fuzzy models

صفحه 34:
Tree Scatter Partition Partition 1 2 Grid Partition (a)

Fuzzy Inference Systems 主講人 : 虞台文 Content   The Architecture of Fuzzy Inference Systems Fuzzy Models: – – –  Mamdani Fuzzy models Sugeno Fuzzy Models Tsukamoto Fuzzy models Partition Styles for Fuzzy Models Fuzzy Inference Systems The Architecture of Fuzzy Inference Systems Fuzzy Systems Input Fuzzifier Inference Engine Fuzzy Knowledge base Defuzzifier Output Fuzzy Control Systems Input Fuzzifier Inference Engine Fuzzy Knowledge base Defuzzifier Plant Output I nput Fuzzifier Fuzzif ier I nf erence Engine Def uzzif ier Fuzzy Knowledge bas e Converts the crisp input to a linguistic variable using the membership functions stored in the fuzzy knowledge base. O utput I nput Fuzzifier Fuzzif ier I nf erence Engine Def uzzif ier Fuzzy Knowledge bas e Converts the crisp input to a linguistic variable using the membership functions stored in the fuzzy knowledge base. O utput I nput Fuzzif ier I nf erence Engine Def uzzif ier Inference Engine Fuzzy Knowledge bas e Using If-Then type fuzzy rules converts the fuzzy input to the fuzzy output. O utput I nput Defuzzifier Fuzzif ier I nf erence Engine Def uzzif ier Fuzzy Knowledge bas e Converts the fuzzy output of the inference engine to crisp using membership functions analogous to the ones used by the fuzzifier. O utput Nonlinearity In the case of crisp inputs & outputs, a fuzzy inference system implements a nonlinear mapping from its input space to output space. Fuzzy Inference Systems Mamdani Fuzzy models Mamdani Fuzzy models  Original Goal: Control a steam engine & boiler combination by a set of linguistic control rules obtained from experienced human operators. Max-Min Composition is used. The Reasoning Scheme Max-Product Composition is used. The Reasoning Scheme I nput Defuzzifier Fuzzif ier I nf erence Engine Fuzzy Knowledge bas e   Def uzzif ier O utput Converts the fuzzy output of the inference engine to crisp using membership functions analogous to the ones used by the fuzzifier. Five commonly used defuzzifying methods: – Centroid of area (COA) – Mean of maximum (MOM) – – – Bisector of area (BOA) Smallest of maximum (SOM) Largest of maximum (LOM) I nput Defuzzifier Fuzzif ier I nf erence Engine Fuzzy Knowledge bas e Def uzzif ier O utput I nput Fuzzif ier Defuzzifier I nf erence Engine Def uzzif ier O utput Fuzzy Knowledge bas e zzCOA COA zdz  ((zz))zdz  ,,  dz  ((zz))dz ZZ ZZ zBOA zBOA dz  dz,,  ((zz))dz  ((zz))dz  zBOA zBOA AA zdz zdz   ZZ zzMOM  ,,  MOM dz dz   Z   AA AA AA Z  **  where Z  { z ;  ( z )   where Z {z; AA (z)  }} Example R1 : If X is small then Y is small R2 : If X is medium then Y is medi R3 : If X is large then Y is large X = input  [10, 10] Y = output  [0, 10] Max-min composition and centroid defuzzification were used. Overall input-output curve Example R1: If X is small & Y is small then Z is negative l R2: If X is small & Y is large then Z is negative sm R3: If X is large & Y is small then Z is positive sm R4: If X is large & Y is large then Z is positive lar X, Y, Z  [5, 5] Max-min composition and centroid defuzzification were used. Overall input-output curve Fuzzy Inference Systems Sugeno Fuzzy Models Sugeno Fuzzy Models  Also known as TSK fuzzy model – Takagi, Sugeno & Kang, 1985  Goal: Generation of fuzzy rules from a given input-output data set. Fuzzy Rules of TSK Model If x is A and y is B then z = f(x, y) Fuzzy Sets Crisp Function f(x, y) is very often a polynomial function w.r.t. x and y. Examples R1: if X is small and Y is small then z = x +y +1 R2: if X is small and Y is large then z = y +3 R3: if X is large and Y is small then z = x +3 R4: if X is large and Y is large then z = x + y + 2 The Reasoning Scheme Example R1: If X is small then Y = 0.1X + 6.4 R2: If X is medium then Y = 0.5X + 4 R3: If X is large then Y = X – 2 X = input  [10, 10] oth o m s n u Example R1: If X is small then Y = 0.1X + 6.4 R2: If X is medium then Y = 0.5X + 4 R3: If X is large then Y = X – 2 X = input  [10, 10] If we have smooth membership functions (fuzzy rules) the overall input-output curve becomes a smoother one. Example R1: if X is small and Y is small then z = x +y +1 R2: if X is small and Y is large then z = y +3 R3: if X is large and Y is small then z = x +3 R4: if X is large and Y is large then z = x + y + 2 X, Y  [5, 5] Fuzzy Inference Systems Tsukamoto Fuzzy models Tsukamoto Fuzzy models The consequent of each fuzzy if-then- rule is represented by a fuzzy set with a monotonical MF. Tsukamoto Fuzzy models Example R1: If X is small then Y is C1 R2: If X is medium then Y is C2 R3: if X is large then Y is C3 Fuzzy Inference Systems Partition Styles for Fuzzy Models Review Fuzzy Models If <antecedence> then <consequence>. The same style for Mamdani Fuzzy models • Sugeno Fuzzy Models • Tsukamoto Fuzzy models • Different styles for Mamdani Fuzzy models • Sugeno Fuzzy Models • Tsukamoto Fuzzy models • Partition Styles for Input Space Grid Partition Tree Partition Scatter Partition

51,000 تومان