علوم مهندسی کامپیوتر و IT و اینترنت

Hot Topics in Mobile and Pervasive Computing Discussion of LOC1 and LOC2

mozuate_dagh_dar_mobile (1)

در نمایش آنلاین پاورپوینت، ممکن است بعضی علائم، اعداد و حتی فونت‌ها به خوبی نمایش داده نشود. این مشکل در فایل اصلی پاورپوینت وجود ندارد.




  • جزئیات
  • امتیاز و نظرات
  • متن پاورپوینت

امتیاز

درحال ارسال
امتیاز کاربر [0 رای]

نقد و بررسی ها

هیچ نظری برای این پاورپوینت نوشته نشده است.

اولین کسی باشید که نظری می نویسد “Hot Topics in Mobile and Pervasive Computing Discussion of LOC1 and LOC2”

Hot Topics in Mobile and Pervasive Computing Discussion of LOC1 and LOC2

اسلاید 1: 1CSCE 5013: Hot Topics in Mobile and Pervasive ComputingDiscussion of LOC1 and LOC2Nilanjan BanerjeeHot Topic in Mobile and Pervasive ComputingUniversity of ArkansasFayetteville, ARnilanjan.banerjee@gmail.comAcknowledgment: Romit Roychoudhuri for the slides

اسلاید 2: 2LOC2: SurroundSense

اسلاید 3: Location-Based Applications (LBAs)For Example:GeoLife shows grocery list when near WalmartMicroBlog queries users at a museumLocation-based ad: Phone gets coupon at StarbucksiPhone AppStore: 3000 LBAs, Android: 500 LBAs

اسلاید 4: Most emerging location based apps do not care about the physical locationGPS: Latitude, Longitude

اسلاید 5: Most emerging location based apps do not care about the physical locationInstead, they need the user’s logical locationGPS: Latitude, LongitudeStarbucks, RadioShack, Museum, Library

اسلاید 6: Physical Vs LogicalUnfortunately, most existing solutions are physicalGPSGSM basedGoogle LatitudeRADARCricket…

اسلاید 7: Given this rich literature,Why not convert from Physical to Logical Locations?

اسلاید 8: Physical LocationError

اسلاید 9: Pizza HutStarbucksPhysical LocationError

اسلاید 10: Pizza HutStarbucksPhysical LocationError The dividing-wall problem

اسلاید 11: SurroundSense:A Logical Localization Solution

اسلاید 12: It is possible to localize phones by sensing the ambience Hypothesissuch as sound, light, color, movement, WiFi …

اسلاید 13: It is possible to localize phones by sensing the ambience Hypothesissuch as sound, light, color, movement, WiFi …

اسلاید 14: Multi-dimensional sensing extracts more ambient informationAny one dimension may not be unique, but put together, they may provide a unique fingerprint

اسلاید 15: SurroundSenseMulti-dimensional fingerprintBased on ambient sound/light/color/movement/WiFi StarbucksWallPizza Hut

اسلاید 16: BACDEShould Ambiences be Unique Worldwide?FGHJILMNOPQQRK

اسلاید 17: Should Ambiences be Unique Worldwide?BACDEFGHJIKLMNOPQQRGSM provides macro location (strip mall) SurroundSense refines to Starbucks

اسلاید 18: Economics forces nearby businesses to be diverseNot profitable to have 3 adjascent coffee shopswith same lighting, music, color, layout, etc.SurroundSense exploits this ambience diversityWhy does it work?The Intuition:

اسلاید 19: +Ambience FingerprintingTest FingerprintSound Acc.Color/LightWiFiLogicalLocation MatchingFingerprintDatabase=Candidate FingerprintsGSM Macro LocationSurroundSense Architecture

اسلاید 20: FingerprintsSound:(via phone microphone)Color:(via phone camera) Amplitude Values-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Normalized Count0.14 0.12 0.1 0.080.06 0.04 0.02 0 Acoustic fingerprint (amplitude distribution)Color and light fingerprints on HSL space Lightness 1 0.5 0 Hue00.5100.20.40.60.81Saturation

اسلاید 21: Fingerprinting Sound Fingerprint generation : Signal amplitudeAmplitude values divided in 100 equal intervalsSound Fingerprint = 100 normalized values valueX = # of samples in interval x / total # of samplesFilter Metric: Euclidean distanceDiscard candidate fingerprint if metric > threshold гThreshold г Multiple 1 minute recordings at the same locationdi = max dist ( any two recordings )г = max ( di of candidate locations )

اسلاید 22: Fingerprinting ColorFloor PicturesRich diversity across different locationsUniformity at the same locationFingerprint generation: pictures in HSL spaceK-means clustering algorithmCluster’s centers + sizesRanking metric

اسلاید 23: FingerprintsMovement: (via phone accelerometer)CafeteriaClothes StoreGrocery StoreStaticMoving

اسلاید 24: FingerprintsMovement: (via phone accelerometer)CafeteriaClothes StoreGrocery StoreStaticQueuing Seated Moving

اسلاید 25: FingerprintsMovement: (via phone accelerometer)CafeteriaClothes StoreGrocery StoreStaticPause for product browsingShort walks between product browsingMoving

اسلاید 26: FingerprintsMovement: (via phone accelerometer)CafeteriaClothes StoreGrocery StoreStaticWalk moreQuicker stopsMoving

اسلاید 27: FingerprintsMovement: (via phone accelerometer)WiFi: (via phone wireless card)CafeteriaClothes StoreGrocery StoreStaticƒ(overheard WiFi APs)Moving

اسلاید 28: Fingerprinting WiFiFingerprint generation: fraction of time each unique address was overheardFilter/Ranking MetricDiscard candidate fingerprints which do not have similar MAC frequencies

اسلاید 29: DiscussionTime varying ambienceCollect ambience fingerprints over different time windowsWhat if phones are in pockets?Use sound/WiFi/movementOpportunistically take picturesFingerprint DatabaseWar-sensing

34,000 تومان

خرید پاورپوینت توسط کلیه کارت‌های شتاب امکان‌پذیر است و بلافاصله پس از خرید، لینک دانلود پاورپوینت در اختیار شما قرار خواهد گرفت.

در صورت عدم رضایت سفارش برگشت و وجه به حساب شما برگشت داده خواهد شد.

در صورت نیاز با شماره 09353405883 در واتساپ، ایتا و روبیکا تماس بگیرید.

افزودن به سبد خرید