کامپیوتر و IT و اینترنتعلوم مهندسی

Artificial Intelligence: Past, Present and Future

صفحه 1:
Petree 7 Computer Engineering Department Artificial Intelligence: ۳۰۱۶۰ Present and Future Parham Moradi A ‏ار‎ http://math-cs.aut.ac.ir/~moradi

صفحه 2:
آیا مي‌توان ماشيني طراحي کرد که در بزرگراههاي تهران به صورت اتوماتیک رانندگي کند؟ آیا مي‌توان رباتي طراحي کرد که بدون کمک انسان قضاياي جدید رياضي را اثبات کند؟ آیا مي‌توان رباتي طراحي کرد که بتواند در مورد موضوع خاصي یک داستان یا مقاله بنویسد؟ آیا مي‌توان یک ربات پزشک طراحي کرد ؟ آيا مي‌توان یک ماشین مترجم ساخت صحبتهاي کسي را که به زبان فارسي با یک انگليسي زبان گفتگو مي‌کند را به صورت اتوماتیک ترجمه کند؟ و

صفحه 3:
What is Al Foundation of Al A brief history Al Research Areas Application of Al Future of Al

صفحه 4:
What is Artificial Intelligence Intelligence: “ability to learn, understand and think” (Oxford dictionary) the study of the capacity of machines to simulate intelligent human behaviour Al is the study of how to make computers make things which at the moment people do better.

صفحه 5:
What is Artificial Intelligence Different definitions due to different criteria - Two dimensions: - Thought processes/reasoning vs. behavior/action - Success according to human standards vs. success according to an ideal concept of intelligence: rationality. Systems that think Systems that think Systems that act Systems that act

صفحه 6:
Systems that like humans When does a system behave intelligently? - Turing (1950) Computing Machinery and Intelligence - Operational test of intelligence: imitation game 3 | و ۴:5 - Test still relevant now, yet might be the wrong question. - Requires the collaboration of major components of Al: knowledge, reasoning, language understanding, learning, ...

صفحه 7:
Systems that like humans Turing Test 1990: Loebner Prize established. Grand Prize of $100,000 and a Gold Medal for the first computer whose responses are indistinguishable from a human. (Solid 18 carat, not gold-plated like the Olympic "Gold" medals)

صفحه 8:
Systems that ‎a‏ اله الل شا 2 ‎a‏ 3 ع اه ‎Srourmy shop. sep‏ ل ‎oss Scniae Read Home _Searen Wlatecape‏ ‎MER" whats Rataiow‏ ]7 مه سم و ‎aE Bootranks 2 Locator:‏ | ‎[ Potenbers ‏که‎ P comectins J aniowna f snanspaate f vroiace ‎aS Create your own robot personal ‎fa ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎CHAT ROBOT fea ‎People Are Saying to ALICE Now: ‎ ‎‘What can I call you? "1 eI 1 ‎~ [ Repiy] ‏لقع‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎

صفحه 9:
Systems that like humans How do humans think? - Requires scientific theories of internal brain activities (cognitive model): ~ Level of abstraction? (knowledge or circuitry?) - Validation? = Predicting and testing human behavior - Identification from neurological data - Cognitive Science vs. Cognitive neuroscience. Both approaches are now distinct from Al Share that the available theories do not explain anything resembling human intelligence. - Three fields share a principal direction.

صفحه 10:
Systems that like humans

صفحه 11:
Systems that like humans WE MIND Tame beware Some references; - Daniel C. Dennet. Consciousness explained. - M. Posner (edt.) Foundations of cognitive science - Francisco J. Varela et al. The Embodied Mind - J.-P. Dupuy. The mechanization of the mind CONSCIOUSNESS EXPLAINED ‏و‎

صفحه 12:
Systems that rationally Capturing the laws of thought - Aristotle: What are ‘correct’ argument and thought processes? - Correctness depends on irrefutability of reasoning processes. - This study initiated the field of logic. - The logicist tradition in Al hopes to create intelligent systems using logic programming. - Problems: - Not all intelligence is mediated by logic behavior ~ What is the purpose of thinking? What thought should one have?

صفحه 13:
Systems that A reference; PROLOG - Ivan Bratko, Prolog ‏ا‎ ‎programming for artificial intelligence.

صفحه 14:
Systems that rationally Rational behavior: “doing the right thing” - The “Right thing” is that what is expected to maximize goal achievement given the available information. Can include thinking, yet in service of rational action. - Action without thinking: e.g. reflexes.

صفحه 15:
Systems that rationally Two advantages over previous approaches: - More general than law of thoughts approach - More amenable to scientific development. Yet rationality is only applicable in idea/ environments. Moreover rationality is not a very good model of reality.

صفحه 16:
Rational agents An agent is an entity that perceives and acts This course is about designing rational agents - An agent is a function from percept histories to actions: f:PK5 A - For any given class of environments and task we seek the agent (or class of agents) with the best performance. - Problem: computational limitations make perfect rationality unachievable.

صفحه 17:
Intelligence — is the ability to make primitive judgment by logical arguments, which comes from past experience. Al —is the development of technique which can be used to reproduce this ability in computers and other machine.

صفحه 18:
A brief history Foundation of Al Al Research Areas Application of Al Future of Al

صفحه 19:
Foundation of Al A brief history Al Research Areas Application of Al Future of Al

صفحه 20:
Build systems that display intelligent behaviour i.e ” Smart systems” Technological perspective Methods Knowledge based methods ‘Behavioral methods ‘Subsymbolic methods Connected via emperical method Foundation of Al Studie of intelligent systems related to computational processes Scientific perspective ulilding on ia

صفحه 21:
Foundations of Al ilosophy (423 BC - present): - Logic, methods of reasoning. Mind as a physical system. ll- Foundations of learning, language, and rationality. S (c.800 - present): - Formal representation and proof. 11- Algorithms, computation, decidability, tractability. il- Probability.

صفحه 22:
Foundations of Al Jy (1879 - present): - Adaptation il- Phenomena of perception and motor {il- Experimental techniques. (1957 - present): - Knowledge representation. il- Grammar.

صفحه 23:
A brief history Al Research Areas Application of Al Future of Al

صفحه 24:
A brief history - 1943: Warren Mc Culloch and Walter Pitts: a model of artificial boolean neurons to perform computations. - First steps toward connectionist computation and learning (Hebbian learning). - Marvin Minsky and Dann Edmonds (1951) constructed the first neural network computer - 1950: Alan Turing’s “Computing Machinery and Intelligence” - First complete vision of Al. - Idea of Genetic Algorithms

صفحه 25:
A brief history (2) The birth of (the term) Al (1956) - Darmouth Workshop bringing together top minds on automata theory, neural nets and the study of intelligence. ~ Allen Newell and Herbert Simon: The logic theorist (first nonnumerical thinking program used for theorem proving) - For the next 20 years the field was dominated by these participants. - Great expectations (1952-1969) - Newell and Simon introduced the General Problem Solver. ~ Imitation of human problem-solving ~ Arthur Samuel (1952-)investigated game playing (checkers ) with great success. ~ John McCarthy(1958-) : ~ Inventor of Lisp (second-oldest high-level language) = Logic oriented, Advice Taker (separation between knowledge and reasoning)

صفحه 26:
A brief history (3) The birth of Al (1956) - Great expectations continued .. - Marvin Minsky (1958 -) ~ Introduction of microworlds that appear to require intelligence to solve: e.g. blocks-world - Anti-logic orientation, society of the mind. Collapse in Al research (1966 - 1973) - Progress was slower than expected. - Unrealistic predictions. - Some systems lacked scalability. - Combinatorial explosion in search. - Fundamental limitations on techniques and representations. - Minsky and Papert (1969) Perceptrons.

صفحه 27:
A brief history (4) Al revival through knowledge-based systems (1969-1970) - General-purpose vs. domain specific - E.g. the DENDRAL project (Buchanan et al. 1969) ~ First successful knowledge intensive system. - Expert systems - MYCIN to diagnose blood infections (Feigenbaum et al.) - Introduction of uncertainty in reasoning - Increase in knowledge representation research. - Logic, frames, semantic nets, ...

صفحه 28:
A brief history (5) Al becomes an industry (1980 - present) - R1 at DEC (McDermott, 1982) - Fifth generation project in Japan (1981) - American response ... Puts an end to the Al winter. Connectionist revival (1986 - present) - Parallel distributed processing (RumelHart and McClelland, 1986); back-propagation

صفحه 29:
A brief history (6) Al becomes a science (1987 - present) - Neats vs. scruffies. - In speech recognition: hidden markov models - In neural networks - In uncertain reasoning and expert systems: Bayesian network formalism The emergence of intelligent agents (1995 - present) - The whole agent problem: “How does an agent act/behave embedded in real environments with continuous sensory inputs”

صفحه 30:
Al Research Areas Application of Al Future of Al

صفحه 31:
Major research areas (appiications) Knowledge Representation Natural Language Understanding Image, Speech and pattern recognition Uncertainty Modeling Expert systems Web Mining

صفحه 32:
Knowledge Representation What kind of Knowledge needed for Problem solving ? Structure of knowledge ? - declarative vs procedural Representation techniques ? - explicit vs (implicit + inference) - logic, frame, object-oriented, semantic net, script Knowledge acquisition and update

صفحه 33:
Search Theory An Optimization method Analyze alternative cases and select one Cope with Exponential complexity, NP classes Try likely one first (Heuristic Search) Utilize local information (Hill Climbing Method) - Optimal solution vs good solution Genetic Algorithm, Simulated Annealing - Stochastic search

صفحه 34:
Automated Reasoning Qualitative Reasoning - Utilization of qualitative knowledge such as Non-monotonic Reasoning - Ostrich flys ? Plausible Reasoning - Information fusion under uncertainty Case-based Reasoning - Utilization of Experience

صفحه 35:
Machine Learning Performance improvement by experience How much of knowledge required to start learning ? - Method of acquiring new knowledge and merging it to existing knowledge-base - Role of teacher Role of examples and experience Parameter Adjustment Inductive learning Computational Learning Theory - Quality of generalization capability in terms of Training data Used in Practice such as Data Mining

صفحه 36:
Data Mining Knowledge extraction for decision

صفحه 37:
Neural Network omputational model o Neurons - Power comes from Connection of simple processing element - connectionism xX, wa Se ۳۳ % ‏ههه‎ ) FX, Xe or XD 3 x,

صفحه 38:
Neural Network learning = link weigh adjustment - Error-back-propagation : supervised learning - Any Functional Mapping is learnable Strong at Sensory Data Processing - Symbolic Grounding Old Horse on the race again - Massive parallelism, graceful degradation

صفحه 39:
Neural Network Classifier Job(1/0) On ‏وود‎ 9> Salary ——)< #mouth — -@4 ‏ب‎ Debt —— @f 2

صفحه 40:
Genetic Algorithms Computational model of life evolution Stochastic optimization technique - Initial chromosome creation ~ New generations are made (cross over, mutation) - survival of the fittest Base of artificial life research - study evolution of life, by simulation

صفحه 41:
Web Mining Analysing Web Information Web 1.0 - Web Usage Mining - Web Content Mining - Web Structure Mining Web 2.0 -Semantic Web -Web Services -Social Networks (Wikis-Web Logs-...)

صفحه 42:
Application of Al Future of Al

صفحه 43:
Autonomous Land Vehicle (DARPA’s GrandChallenge contest)

صفحه 44:
Autonomous Land Vehicle DARPA’s GrandChallenge contest) GPS Receiver ‘OP Postion Inter Vehicle Signaling like Veticle Signaling Mp updates and esther feed Fader ed for ‏وب‎ ‎object cetecion 5-7 Wireless Internet

صفحه 45:
Automatic Speech Processing

صفحه 46:
Game Playing ry Kasparov Vs Deep Blue

صفحه 47:
Game Playing Computer won world ‏هرا اك‎ of chess (S

صفحه 48:
Medical expert systems rounnvs listed by Gpevial Piekt Antibiotics & Infectious Gynecology Diseases ۱ Anal Caricer maging Analysis Chest pain Internal Medicine Dentistry Intensive Care Dermatology Laboratory Systems Drugs & Orthopedics Toxicology ae Emergency Pediatrics Epilepsy Pulmonology & Ventilation Family Practice Surgery & Post-Operative Genetics Care Geriatrics Trauma Management

صفحه 49:
Pattern Recognition Applications Handwriting and document recognition - forms, postal mail, historic documents - PDA pen recognition Signature, biometrics (finger, face, iris, etc.) Gesture, facial expression - As a Human computer intertraction EEG, EKG, X-ray Trafic monitoring, Remote Sensing Smart Weapon - guided missile, target homing

صفحه 50:
Handwriting Understanding اس سس اد ممه معد 2 ‎sires na wee‏ سه وق ۳ ۶ ‏عم‎ asso ‎soos‏ دا ‏سه م ‎i”‏ ‏لمعه ونه ‎pious‏ ‎۰ ‏إلنق اتن أعج سمه 0 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎

صفحه 51:
Decision Support Systems (DSS)

صفحه 52:
Intelligent Transportation Systems

صفحه 53:
Smart Music System The Bose uMusic system uses artificial intelligence to learn the listening habits and preferences of its users. Load your CDs into the digital music delivery system, it can hold thousands of songs, and it will learn your listening preferences and prioritize your music collection.

صفحه 54:
Pandora.com 22 ۳ 5 موس 6 0 ۲ yr more music that I'l like? ا وت [] سس ۲ موز موی ‎Tenet ٩‏ © ]مد و

صفحه 55:
Control systems

صفحه 56:
Outline Future of Al

صفحه 57:
Future of Al هي يا ‎Slut a 4 Forsight b Futurology‏ ابداعات؛ نوآوري‌ها و ادامه روندها و پيش‌بيني وقایع علمي در آینده مي‌پردازد مي‌پردا دازد

صفحه 58:
Future of Al اين فیلد در دنیا با کلمات كليدي زیر نیز شناخته مي‌شود : وهزبا5 ۴۲۲۵5 (در محافل‌دلنشگاهیل *ونعه0۲؟ 5۲۵۲691 (در محافل‌دلنشگاهی ‎futurology‏ ‎futuristics‏ ‎futures thinking‏ ‎futuring‏ ‎(awil, 6 5) futuribles‏ ‎prospectiva‏ (در لیتالا و آمریکایلا نی

صفحه 59:
Future of Al واژه 50751 براي اولين بار در سال 9060 در سایت خبري ‎BBC‏ ‎busi‏ ۲4۰63۰۷۷6115 براي تاسیس دانشکده‌اي در اين زمینه جهت پيش‌بيني آینده تحقيقاتي دانشگاهي ‎coast dls PO‏ به کار گرفته شد . واژه / براي اولین بار توسط یک دانشمند آلماني به نام ‎Ossip K. Flechtheim‏ » سال 1960 به کار برده شد. ‎Fu‏ كه معني آن» مطالعات در مورد آینده یا آينده‌نگري است؛ ‏در سال ‎(QOD‏ براي اولین بار در ایالت متحده آمریکا رشته دانشگاهي آینده پژوهي تاسیس شد

صفحه 60:
Future of Al به كساني که در فیلد آینده پژوهي مطالعه و تحقیق مي‌کنند اصطلاحا " آینده نگر " ‎Futurist &‏ گفته مي‌شود آینده نگر ها در مورد مسیر حرکت ‎ale‏ تحقیق مي کنند . مطالعات برروي آينده‌پژوهي از سال 19660 به بعد اغاز شد و افرادي چون ‎Herman Kahn, Olaf Helmer, Bertrand de Jouvenel,‏ ‎Dennis Gabor, Oliver Markley, Burt Nanus, and‏ 86۱۱ ۷۷606۱۱ از پایه‌گذاران اين علم بودند

صفحه 61:
Future of Al بعضي ديكر از آينده نكر هاء نتيجه مطالعات و بيزوهش هاي خود را در زمينه آينده نكرم صورت فیلمنامه در مي آوردند و فیلم هاي تخيلي ‎a Ae! L (Science Fiction) cde‏ کردند يكي از معروفترین آنها آرتور سي کلارک (13۲16 6 ‎Gul (Arthure‏ که اولین فیلم او با این مضمون در سال 960 با عنوان "2001 : 00۷556۷ 5066 ۸ " به نمایش در

صفحه 62:
Future of Al تعدادي از اين نوع فیلم ها در زیر لیست شده است : A Space Odyssey - Arthur C. Clarke - 1968 :2001 [1] Odyssey Two - Arthur C. Clarke - 1982 :2010[2] Odyssey Three - Arthur C. Clarke - 1982 :2061 [3] The Final Odyssey, the Leonov mission is said :3001 [4] to have taken place in the 2040s - Arthur C. Clarke - 1997 The Year We Make Contact - 1984 :2010[5]

صفحه 63:
Future of Al پیش بيني هاي مجله ‎lu GD 2» The Futurist‏ آینده بیشتر تصمیمات» توسط موجوديت‌هاي غیر انساني اتخاذ (ربات‌ها» سيستم‌هاي خبره و ...) خواهد شد شبكه‌اي از تيم‌هاي الکترونيکي» ربات‌هاي هوشمند در حوزه‌هاي مختلف ‎She‏ ‏سیاست» بهداشت » آموزش و عیره تصمیم گيري خواهند کرد. دلیل آن پیشرفت تكنولوژي است و باعث کاهش خطاي انساني در تصمیم گيري‌ها مي‌شود.

صفحه 64:
0 ‎-١‏ كاربرد خانكى ‏بيه | 604 ‎ ‏ب سر 55 04 = ‎ASIMO Abio Paero‏ یک ربات خانگی ‏ریات انسان‌نمایی که قابلیت راه وفتن دار

صفحه 65:
Future of Al 9 كاديودهاى يزشعى ‏ ‎‘Ri-Man 1‏ ريات تكن نان ريات لمداديار ربات در تاروشانده ‎Da Vinei‏ ‎ ‏رباتی که عمل جراحی انجام ‎Es =

صفحه 66:
Future of Al كاربردهاي نظامي از سال 00000 به بعد سازمانهاي نظامي آمریکا پروژه بزرگي براي تولید ربات‌هاي نظامي را شروع کردند و از ربات‌ها در جنگ با عراق نیز توسط آمریکا استفاده شد. در 00یا 000 سال آیند سازمانهاي نظامي آمریکا تفنگ و ادوات کشنده را كنار خواهند گذاشت و ادوات جنگي غیر کشنده را تولید خواهند کرد که اين ادوات جنگي توسط ربات‌ها استفاده خواهد شد.

صفحه 67:
Future of Al كاربردهاي نظامي از سال 00000 به بعد سازمانهاي نظامي آمریکا پروژه بزرگي براي تولید ربات‌هاي نظامي را شروع کردند و از ربات‌ها در جنگ با عراق نیز توسط آمریکا استفاده شد. در 00 یا 00 سال آیند سازمانهاي نظامي آمریکا تفنگ و ادوات کشنده را کنار خواهند گذاشت و ادوات جنگي غیر کشنده را تولید خواهند کرد که اين ادوات جنگي توسط ربات‌ها استفاده خواهد شد. تر جنگ‌ها در ‎coal‏ او سط ‎it jp‏ طر نا صلحء ‎sb hic‏

صفحه 68:
Future of Al کاربردهاي نظامي Machine-gun equipped | bate field extraction Big Dog robot

صفحه 69:
Future of Al

صفحه 70:
Future of Al رباتهاي کاوشگر فضا

صفحه 71:
Future of Al پیش بيني‌هاي دیگر در مورد رباتها ربات‌هاي كشاورزي - از سال 00000 تاسال ‎COUP‏ ربات‌هايي که از سالمندان مراقبت مي‌کنند - از سال ۸00 تا سال 600 ربات‌هايي که عمل جراحي جزيي انجام مي‌دهند - تا سال 600072 ربات‌هايي که كارهاي خانه را انجام مي‌دهند - از سال 200072 تا سال 0009 نانو ربات‌ها یک سوم آتشنشان‌ها » ربات خواهند بود- تا سال 60006 جنگ‌ها کاملا بوسیله 009 بات‌هاي سرباز خود مختار انجام مي‌شود - تا سال

صفحه 72:
Future of Al پیش بيني‌هاي دیگر در مورد رباتها ربات‌هاي كشاورزي - از سال 00000 تاسال ‎COUP‏ ربات‌هايي که از سالمندان مراقبت مي‌کنند - از سال ۸00 تا سال 600 ربات‌هايي که عمل جراحي جزيي انجام مي‌دهند - تا سال 600072 ربات‌هايي که كارهاي خانه را انجام مي‌دهند - از سال 200072 تا سال 0009 نانو ربات‌ها یک سوم آتشنشان‌ها » ربات خواهند بود- تا سال 60006 جنگ‌ها کاملا بوسیله 009 بات‌هاي سرباز خود مختار انجام مي‌شود - تا سال

صفحه 73:
Future of Al پیش بيني‌ها در حوزه‌هاي دیگر - جستجوي وب بر اساس محتوي صفحات وب - آنالیز حجم زياد داده در وب مثال : - لیست عكسهايي که در آنها ماشین و درخت وجود دارد - استفاده از وب به عنوان منبع دانش : آیا مي‌توان شرح حال بیمار را گفت و یک سیستم خبره » با استفاده از مستندات وب» دارو تجویز کند؟ Google

صفحه 74:
Future of Al پیش بيني‌ها در حوزه‌هاي دیگر تر جمه ماشيني و پردازش سیگنال - سازمان‌هاي نظامي آمریکا سرگرم طراحي یک ماشین آي سي هستند که بتواند در داخل موبایل ها قرار گیرد و ترجمه گفتار را بر اساس 49 زبان زنده دنیا انجام دهد - ترجمه اتوماتیک صفحات وب ‎Google‏

صفحه 75:
Future of Al هوش شناختي ‎(Cognitive Science)‏ - مطالعه برروي نحوه رفتار و تفکر انسان

صفحه 76:
با تشکر از توجه شما

Kurdestan University of Technology Computer Engineering Department Artificial Intelligence: Past, Present and Future Parham Moradi http://math-cs.aut.ac.ir/~moradi Click to add Title آيا مي‌توان ماشيني طراحي کرد که در بزرگراههاي تهران به صورت اتوماتيک رانندگي کند؟ آيا مي‌توان رباتي طراحي کرد که بدون کمک انسان قضاياي جديد رياضي را اثبات کند؟ آيا مي‌توان رباتي طراحي کرد که بتواند در مورد موضوع خاصي يک داستان يا مقاله بنويسد؟ آيا مي‌توان يک ربات پزشک طراحي کرد ؟ آيا مي‌توان يک ماشين مترجم ساخت صحبتهاي کسي را که به زبان فارسي با يک انگليسي زبان گفتگو مي‌کند را به صورت اتوماتيک ترجمه کند؟ و ... ‏Pag.2 Outline What is AI Foundation of AI A brief history AI Research Areas Application of AI Future of AI Pag.3 What is Artificial Intelligence Intelligence: “ability to learn, understand and think” (Oxford dictionary) the study of the capacity of machines to simulate intelligent human behaviour AI is the study of how to make computers make things which at the moment people do better. Pag.4 What is Artificial Intelligence Different definitions due to different criteria – Two dimensions: – Thought processes/reasoning vs. behavior/action – Success according to human standards vs. success according to an ideal concept of intelligence: rationality. Systems that think like humans Systems that think rationally Systems that act like humans Systems that act rationally Pag.5 Systems that act like humans When does a system behave intelligently? – Turing (1950) Computing Machinery and Intelligence – Operational test of intelligence: imitation game – Test still relevant now, yet might be the wrong question. – Requires the collaboration of major components of AI: knowledge, reasoning, language understanding, learning, … Pag.6 Systems that act like humans Turing Test 1990: Loebner Prize established. Grand Prize of $100,000 and a Gold Medal for the first computer whose responses are indistinguishable from a human. (Solid 18 carat, not gold-plated like the Olympic "Gold" medals) Pag.7 Systems that act like humans www.Alicebot.org AI 09/06/25 Pag.8 Systems that think like humans How do humans think? – Requires scientific theories of internal brain activities (cognitive model): – Level of abstraction? (knowledge or circuitry?) – Validation? – Predicting and testing human behavior – Identification from neurological data – Cognitive Science vs. Cognitive neuroscience. Both approaches are now distinct from AI Share that the available theories do not explain anything resembling human intelligence. – Three fields share a principal direction. Pag.9 Systems that think like humans Pag.10 Systems that think like humans Some references; – Daniel C. Dennet. Consciousness explained. – M. Posner (edt.) Foundations of cognitive science – Francisco J. Varela et al. The Embodied Mind – J.-P. Dupuy. The mechanization of the mind Pag.11 Systems that think rationally Capturing the laws of thought – Aristotle: What are ‘correct’ argument and thought processes? – Correctness depends on irrefutability of reasoning processes. – This study initiated the field of logic. – The logicist tradition in AI hopes to create intelligent systems using logic programming. – Problems: – Not all intelligence is mediated by logic behavior – What is the purpose of thinking? What thought should one have? Pag.12 Systems that think rationally A reference; – Ivan Bratko, Prolog programming for artificial intelligence. Pag.13 Systems that act rationally Rational behavior: “doing the right thing” – The “Right thing” is that what is expected to maximize goal achievement given the available information. Can include thinking, yet in service of rational action. – Action without thinking: e.g. reflexes. Pag.14 Systems that act rationally Two advantages over previous approaches: – More general than law of thoughts approach – More amenable to scientific development. Yet rationality is only applicable in ideal environments. Moreover rationality is not a very good model of reality. Pag.15 Rational agents An agent is an entity that perceives and acts This course is about designing rational agents – An agent is a function from percept histories to actions: f : P*  A – For any given class of environments and task we seek the agent (or class of agents) with the best performance. – Problem: computational limitations make perfect rationality unachievable.  Pag.16 Click to add Title Pag.17 Outline What is AI A brief history Foundation of AI AI Research Areas Application of AI Future of AI Pag.18 Outline What is AI Foundation of AI A brief history AI Research Areas Application of AI Future of AI Pag.19 Foundation of AI Pag.20 Foundations of AI Philosophy (423 BC  present):  Logic, methods of reasoning.  Mind as a physical system.  Foundations of learning, language, and rationality. Mathematics (c.800  present):  Formal representation and proof.  Algorithms, computation, decidability, tractability.  Probability. Pag.21 Foundations of AI Psychology (1879  present):  Adaptation.  Phenomena of perception and motor control.  Experimental techniques. Linguistics (1957  present):  Knowledge representation.  Grammar. Pag.22 Outline What is AI Foundation of AI A brief history AI Research Areas Application of AI Future of AI Pag.23 A brief history – 1943: Warren Mc Culloch and Walter Pitts: a model of artificial boolean neurons to perform computations. – First steps toward connectionist computation and learning (Hebbian learning). – Marvin Minsky and Dann Edmonds (1951) constructed the first neural network computer – 1950: Alan Turing’s “Computing Machinery and Intelligence” – First complete vision of AI. – Idea of Genetic Algorithms Pag.24 A brief history (2) The birth of (the term) AI (1956) – Darmouth Workshop bringing together top minds on automata theory, neural nets and the study of intelligence. – Allen Newell and Herbert Simon: The logic theorist (first nonnumerical thinking program used for theorem proving) – For the next 20 years the field was dominated by these participants. – Great expectations (1952-1969) – Newell and Simon introduced the General Problem Solver. – Imitation of human problem-solving – Arthur Samuel (1952-)investigated game playing (checkers ) with great success. – John McCarthy(1958-) : – Inventor of Lisp (second-oldest high-level language) – Logic oriented, Advice Taker (separation between knowledge and reasoning) Pag.25 A brief history (3) The birth of AI (1956) – Great expectations continued .. – Marvin Minsky (1958 -) – Introduction of microworlds that appear to require intelligence to solve: e.g. blocks-world. – Anti-logic orientation, society of the mind. Collapse in AI research (1966 - 1973) – Progress was slower than expected. – Unrealistic predictions. – Some systems lacked scalability. – Combinatorial explosion in search. – Fundamental limitations on techniques and representations. – Minsky and Papert (1969) Perceptrons. Pag.26 A brief history (4) AI revival through knowledge-based systems (1969-1970) – General-purpose vs. domain specific – E.g. the DENDRAL project (Buchanan et al. 1969) – First successful knowledge intensive system. – Expert systems – MYCIN to diagnose blood infections (Feigenbaum et al.) – Introduction of uncertainty in reasoning. – Increase in knowledge representation research. – Logic, frames, semantic nets, … Pag.27 A brief history (5) AI becomes an industry (1980 - present) – R1 at DEC (McDermott, 1982) – Fifth generation project in Japan (1981) – American response … Puts an end to the AI winter. Connectionist revival (1986 - present) – Parallel distributed processing (RumelHart and McClelland, 1986); back-propagation Pag.28 A brief history (6) AI becomes a science (1987 - present) – Neats vs. scruffies. – In speech recognition: hidden markov models – In neural networks – In uncertain reasoning and expert systems: Bayesian network formalism – … The emergence of intelligent agents (1995 - present) – The whole agent problem: “How does an agent act/behave embedded in real environments with continuous sensory inputs” Pag.29 Outline What is AI Foundation of AI A brief history AI Research Areas Application of AI Future of AI Pag.30 Major research areas (Applications) Knowledge Representation Natural Language Understanding Image, Speech and pattern recognition Uncertainty Modeling Expert systems Web Mining ….. Pag.31 Knowledge Representation What kind of Knowledge needed for Problem solving ? Structure of knowledge ? – declarative vs procedural Representation techniques ? – explicit vs (implicit + inference) – logic, frame, object-oriented, semantic net, script Knowledge acquisition and update Pag. Search Theory An Optimization method Analyze alternative cases and select one Cope with Exponential complexity, NP classes – Try likely one first (Heuristic Search) – Utilize local information (Hill Climbing Method) – Optimal solution vs good solution Genetic Algorithm, Simulated Annealing – Stochastic search Pag. Automated Reasoning Qualitative Reasoning – Utilization of qualitative knowledge such as Non-monotonic Reasoning – Ostrich flys ? Plausible Reasoning – Information fusion under uncertainty Case-based Reasoning – Utilization of Experience Pag. Machine Learning Performance improvement by experience – How much of knowledge required to start learning ? – Method of acquiring new knowledge and merging it to existing knowledge-base – Role of teacher – Role of examples and experience Parameter Adjustment Inductive learning Computational Learning Theory – Quality of generalization capability in terms of Training data Used in Practice such as Data Mining Pag. Data Mining Knowledge extraction for decision making Data Pag.36 Information / knowledge Decision Making Neural Network Computational model of Neurons – Power comes from Connection of simple processing element connectionism X1 X2 . . . Xn Pag. w1 w2 wn  F(X1, X2, …, Xn) Neural Network learning = link weigh adjustment – Error-back-propagation : supervised learning – Any Functional Mapping is learnable Strong at Sensory Data Processing – Symbolic Grounding Old Horse on the race again – Massive parallelism, graceful degradation Pag.38 Neural Network Classifier Job(1/0) good age medium Salary bad #mouth Debt Input layer Pag.39 Hidden layer Output layer Genetic Algorithms Computational model of life evolution Stochastic optimization technique – Initial chromosome creation – New generations are made (cross over, mutation) – survival of the fittest Base of artificial life research – study evolution of life, by simulation Pag. Web Mining Analysing Web Information Web 1.0 – Web Usage Mining – Web Content Mining – Web Structure Mining Web 2.0 -Semantic Web -Web Services -Social Networks (Wikis-Web Logs-…) Pag.41 Outline What is AI Foundation of AI A brief history AI Research Areas Application of AI Future of AI Pag.42 Autonomous Land Vehicle (DARPA’s GrandChallenge contest) Pag.43 Autonomous Land Vehicle (DARPA’s GrandChallenge contest) Pag.44 Automatic Speech Processing Pag.45 Game Playing Pag.46 Game Playing Pag.47 Medical expert systems Programs listed by Special Field Antibiotics & Infectious Diseases Cancer Chest pain Dentistry Dermatology Drugs & Toxicology Emergency Epilepsy Family Practice Genetics Geriatrics Pag.48 Gynecology Imaging Analysis Internal Medicine Intensive Care Laboratory Systems Orthopedics Pediatrics Pulmonology & Ventilation Surgery & Post-Operative Care Trauma Management Pattern Recognition Applications Handwriting and document recognition – forms, postal mail, historic documents – PDA pen recognition Signature, biometrics (finger, face, iris, etc.) Gesture, facial expression – As a Human computer intertraction EEG, EKG, X-ray Trafic monitoring, Remote Sensing Smart Weapon – guided missile, target homing Pag.49 Handwriting Understanding Pag.50 전자 펜으로 수식 입력 수식 인식 Decision Support Systems (DSS) Pag.51 Intelligent Transportation Systems Pag.52 Smart Music System The Bose uMusic system uses artificial intelligence to learn the listening habits and preferences of its users. Load your CDs into the digital music delivery system, it can hold thousands of songs, and it will learn your listening preferences and prioritize your music collection. Pag.53 Pandora.com Pag.54 Control systems Pag.55 Outline What is AI Foundation of AI A brief history AI Research Areas Application of AI Future of AI Pag.56 Future of AI آينده پژوهي يا Futurologyيا Forsightبه بررسي تغييرات ،ابداعات، نوآوري‌ها و ادامه روند‌ها و پيش‌بيني وقايع علمي در آينده مي‌پردازد در اين علم با بررسي و تحليل شرايط گذشته و شرايط فعلي در زمينه‌هاي علمي، مدل پيشرفت و تغييرات اين حوزه‌ها را به صورت سيستماتيک مدل کرده و بر اساس اين تحليل به بررسي تغييرات ،روند‌ها و نوآوري‌ها در آينده اين حوزه ها مي‌پردازد ‏Pag.57 Future of AI : اين فيلد در دنيا با کلمات کليدي زير نيز شناخته مي‌شود ) (در محافل دانشگاهيfutures studies ) (در محافل دانشگاهيstrategic foresight futurology futuristics futures thinking futuring ) (در فرانسهfuturibles ) (در ايتاليا و آمريکاي التينprospectiva Pag.58 Future of AI واژه Foresightبراي اولين بار در سال 1932در سايت خبري BBC توسط H.G.Wellsبراي تاسيس دانشکده‌اي در اين زمينه جهت پيش‌بيني آينده تحقيقاتي دانشگاهي 40سال آينده ،به کار گرفته شد .واژه Futurologyکه معني آن ،مطالعات در مورد آينده يا آينده‌نگري است، براي اولين بار توسط يک دانشمند آلماني به نام Ossip K. Flechtheimدر سال 1940به کار برده شد. در سال 1960براي اولين بار در ايالت متحده آمريکا رشته‌ دانشگاهي آينده پژوهي تاسيس شد ‏Pag.59 Future of AI به کساني که در فيلد آينده پژوهي مطالعه و تحقيق مي‌کنند اصطالحا " آينده نگر " يا Futuristگفته مي‌شود آينده نگر ها در مورد مسير حرکت علم تحقيق مي کنند .مطالعات برروي آينده‌پژوهي از سال 1960به بعد اغاز شد و افرادي چون ‏Herman Kahn, Olaf Helmer, Bertrand de Jouvenel, ‏Dennis Gabor, Oliver Markley, Burt Nanus, and Wendell Bellاز پايه‌گذاران اين علم بودند ‏Pag.60 Future of AI بعضي ديگر از آينده نگر ها ،نتيجه مطالعات و پژوهش هاي خود را در زمينه آينده نگري به صورت فيلمنامه در مي آوردند و فيلم هاي تخيلي علمي ( )Science Fictionرا ايجاد مي کردند يکي از معروفترين آنها آرتور سي کالرک ( )Arthure C Clarkeاست که اولين فيلم او با اين مضمون در سال 1968با عنوان " " A Space Odyssey : 2001به نمايش در آمد. ”HAL-9000 from “2001 – A Space Odyssey ‏Pag.61 Future of AI : تعدادي از اين نوع فيلم ها در زير ليست شده است A Space Odyssey - Arthur C. Clarke – 1968 :2001 ]1[ Odyssey Two - Arthur C. Clarke - 1982 :2010 ]2[ Odyssey Three - Arthur C. Clarke – 1982 :2061 ]3[ The Final Odyssey, the Leonov mission is said :3001 ]4[ to have taken place in the 2040s - Arthur C. Clarke – .1997 The Year We Make Contact - 1984 :2010 ]5[ Pag.62 Future of AI پيش بيني‌هاي مجله The Futuristدر مورد 50سال آينده بيشتر تصميمات ،توسط موجوديت‌هاي غير انساني اتخاذ (ربات‌ها ،سيستم‌هاي خبره و )...خواهد شد شبكه‌اي از تيم‌هاي الكترونيكي ،ربات‌هاي هوشمند در حوزه‌هاي مختلف مثل سياست ،بهداشت ،آموزش و عيره تصميم گيري خواهند كرد .دليل آن پيشرفت تكنولوژي است و باعث كاهش خطاي انساني در تصميم‌گيري‌ها مي‌شود. ‏Pag.63 Future of AI Pag.64 Future of AI Pag.65 Future of AI کاربرد‌هاي نظامي از سال 2006به بعد ساز‌مانهاي نظامي آمريکا پروژه بزرگي براي توليد ربات‌هاي نظامي را شروع کردند و از ربات‌ها در جنگ با عراق نيز توسط آمريکا استفاده شد. در 20يا 30سال آيند سازمانهاي نظامي آمريکا تفنگ و ادوات کشنده را کنار خواهند گذاشت و ادوات جنگي غير کشنده را توليد خواهند کرد که اين ادوات جنگي توسط ربات‌ها استفاده خواهد شد. ‏Pag.66 Future of AI کاربرد‌هاي نظامي از سال 2006به بعد ساز‌مانهاي نظامي آمريکا پروژه بزرگي براي توليد ربات‌هاي نظامي را شروع کردند و از ربات‌ها در جنگ با عراق نيز توسط آمريکا استفاده شد. در 20يا 30سال آيند سازمانهاي نظامي آمريکا تفنگ و ادوات کشنده را کنار خواهند گذاشت و ادوات جنگي غير کشنده را توليد خواهند کرد که اين ادوات جنگي توسط ربات‌ها استفاده خواهد شد. بيشتر جنگ‌ها در آينده ،جنگ‌هاي شهري خواهند بود و استفاده از ادوات جنگي کشنده توسط ربات‌ها يک جنايت جنگي محصوب خواهد شد .لذا از ربات‌هاي جنگي با سالح‌هاي غير کشنده توسط کشورهاي طرفدار صلح ،استفاده خواهد شد. ‏Pag.67 Future of AI کاربرد‌هاي نظامي ‏Pag.68 Future of AI Pag.69 Future of AI رباتهاي کاوشگر فضا ‏Pag.70 Future of AI پيش بيني‌هاي ديگر در مورد رباتها ربات‌هاي کشاورزي -از سال 2013تا سال 2014 ربات‌هايي که از سالمندان مراقبت مي‌کنند – از سال 2013تا سال 2017 ربات‌هايي که عمل جراحي جزيي انجام مي‌دهند – تا سال 2017 ربات‌هايي که کار‌هاي خانه را انجام مي‌دهند – از سال 2017تا سال 2019 نانو ربات‌ها يک سوم آتشنشان‌ها ،ربات خواهند بود -تا سال 2015 جنگ‌ها کامال بوسيله ربات‌هاي سرباز خود مختار انجام مي‌شود – تا سال 2019 ‏Pag.71 Future of AI پيش بيني‌هاي ديگر در مورد رباتها ربات‌هاي کشاورزي -از سال 2013تا سال 2014 ربات‌هايي که از سالمندان مراقبت مي‌کنند – از سال 2013تا سال 2017 ربات‌هايي که عمل جراحي جزيي انجام مي‌دهند – تا سال 2017 ربات‌هايي که کار‌هاي خانه را انجام مي‌دهند – از سال 2017تا سال 2019 نانو ربات‌ها يک سوم آتشنشان‌ها ،ربات خواهند بود -تا سال 2015 جنگ‌ها کامال بوسيله ربات‌هاي سرباز خود مختار انجام مي‌شود – تا سال 2019 ‏Pag.72 Future of AI پيش بيني‌ها در حوزه‌هاي ديگر جستجوي وب بر اساس محتوي صفحات وب آناليز حجم زياد داده در وبمثال : ليست عکسهايي که در آنها ماشين و درخت وجود دارد استفاده از وب به عنوان منبع دانش :آيا مي‌توان شرح حال بيمار را گفت ويک سيستم خبره ،با استفاده از مستندات وب ،دارو تجويز کند؟ ‏Pag.73 Future of AI پيش بيني‌ها در حوزه‌هاي ديگر تر جمه ماشيني و پردازش سيگنال سازمان‌هاي نظامي آمريکا سرگرم طراحي يک ماشين آي سي هستند کهبتواند در داخل موبايل‌ها قرار گيرد و ترجمه گفتار را بر اساس 16زبان زنده دنيا انجام دهد -ترجمه اتوماتيک صفحات وب ‏Pag.74 Future of AI هوش شناختي ()Cognitive Science -مطالعه برروي نحوه رفتار و تفکر انسان ‏Pag.75 Click to add Title با تشکر از توجه شما Pag.76

51,000 تومان