صفحه 1:
معد امع |ه۳<) مسو5۵) مله() :000 امن

صفحه 2:
+ Okwier CO: Ounbws Opeew Orchiecurer Ovotrated and Obet-Gerver Cysts ‏مه موه سره‎ ‏سره له‎ ‎Gyotews‏ له ‏م1 +سو0 ‎Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏ههه‎

صفحه 3:
Cvcirdized Gysiews وی چاه رت مه مه بل ام موه وه و و ‎Bi Ron oa‏ ود ۲ ‏وه ول‎ syste! oar to a Pew OP Os and ‏ام و‎ of xbupe vodrvbrs tho oe coments kro ‏جا صيجا ومخصصم د‎ proves ‏حصي‎ ‎shored wewory. بان ما :مروت بو موه لور اا لل ‎bard dhs} be OG‏ من ‎Weer, ved) kor roy oe OPO ocd ocr or‏ تج ‎Seay SA oy oe User.‏ Bl Queer systew! wore debe, wore werory, wali OP Os, ond a adhere OG. Gere ofan oncber of ‏مرو و لو و مات وی‎ vie teronnis. ‏كان‎ oiled server syste. Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 ههه‎

صفحه 4:
mouse keyboard ۰ ۲ لز كك كد ‎So‏ سا0 لح 0 لا سواه 1 مه ‎OOOO.‏ 000 بط 9 - ویس م6 ی

صفحه 5:
+ Obert Oorver Oyotrwe ۲ Gener spstews sutshy requests yrurrted of 7 cleat systews, whose yeverd structure ts show below: client client client me client network! server Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 همه‎

صفحه 6:
+ ‏بیان‎ Opstrwe (Ovu.) B® Octabuse Puurtcodliy coc be divided tsi: © Becton: warner worse sinwtwes, query evdudion oad opicrtzaion, rey ood ond recovery. © Proctend: cretts of took suck os Pores, reportionters, ot rophicd weer toterPuce Portes. BO ODhe tnterPoce betwee he Prootead ood the bucked & hrougk GGL or through ot ‏جص اه موم ابو‎ report data mining ۲ ‏هی‎ forms || generation | | and analysis | ‘"°"' "4 interface interface ee cae interface (SQL + API) SQL engine back end Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 ههه‎

صفحه 7:
+ ‏بیان‎ Opstrwe (Ovu.) اوه وت ‎of‏ مس ‎wit‏ هخا موجه مد( ۲ تاو موی اما نا وه حطامووت ام رپس( سا ۶ اس موه له ‎to locatieg resvurces‏ رای( ۶ ‎beter user interPares‏ © من ی ۱ Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مه‎

صفحه 8:
+ Gere Opstew Grolincsire © Gerver spstews vou be browdy categorized taty tue berks? © trewsunton servers whick oe widely weed io rebaticod datubusr systews, werd © dato servers, weed fa bectorieuied datdbuse spstews Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 همه‎

صفحه 9:
Vraswirr Oervers © Oby oiled query verver systews or GOL server syste ۶ Oleuis seud requests tp he server ‏و شمه و‎ exerted of the server © Results ore shipped buck to the chet. Bl Reqests or sperfied ia GGL, ond ooamnicdted 7 he server hroanh a rove proceder ol (RPO) ‏اس‎ اسمس ‎Drecwortinnd RPO dhs wacy RPC vals to Pore a‏ لا موس ماه موم 0 وت (000) روم له مس ۲ 7 و ‎exes, ond‏ ۲ 00 ‏هجوت‎ to OO®O, For dart Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 ههه‎

صفحه 10:
+ Trawwirr Gerver Provess Oinwtre © © typed ‏ساك‎ server cousisis oP wulipe: processes uovessiay dott it shored wewory. © Gener processes © Des recur Wer quertes (rmuriows), ‏اجه اجه مد عم‎ remake beh © Crovesses ‏شوه ,لول سا بو‎ 0 state provers ty exert ‏مود‎ User queries poured جعوععومبن +صمحود لجلحج دالج ۱ ‎proves‏ وم ‎Lock‏ © © Dore vn this hier © Ootbuse writer process © QuiputwrdPied bubPer blocks to dishes moet Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مدمه‎

صفحه 11:
دمجم امب بجنا ل انا لس ما نا لام ما للی بو من مه ‎Lex wnter provess puipus by revors table torn.‏ © © Chechponst process © PerPorws perio checkpoints BC rocess wouter process © Qputors ver provesses, ued thes revovery uriocs P oay oP the vier provesses Pail ١ 6.5). cborten ‏مها شمسا بو‎ executed by a server provers od ‏سس‎ Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. 0.00 ©Sbervehnts, Cork ced Cnakershe

صفحه 12:
process process process 1۳۳ 2۳ butier poot monitor shared ‘query plan cache Tog butter | [Tock table database Tog writer writer process process ©Sbervehnts, Cork ced Cnakershe

صفحه 13:
+ Tresasioa Oysiew (Provesses (Ovc.) ۲ ‏ای یی تما‎ shored att © @PPer ‏اس‎ ‎© bok table © boy buPPer © Cached query phre (rased save query sbcotied cra) (Gh nb ‏چم موی‎ nner ‏یت میا‎ عطاك ساد فصل وه عا رت ‎thot w we provesses ore‏ سمج 2109 © لاه ری انم ای او ‎hoe, databases spsiews‏ مور © Operaikn syetew sewophores ۶ ‏امه مس و‎ us teptard-set © Po wos overkedd of ‏اما و( موی وم‎ requestor, euck database proves operates threrdiy oo the back table testes oP sercrcery requests to look wacayer process © Lock ‏ون‎ process sill wed Por deadock detevtica مه Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO.

صفحه 14:
Octa Gervers © Osed ta hkh-sperd LOOs, tt cases where © Dhe cleus wre powparcble tt provessioy power to the server © Whe tasks to be executed one ‏.ونفصها عتحصصة‎ © Oot oe shipped ty chews where provesstny i perPorwed, oad thea shipped vests back to the server. © Vhe ohiertre requires Pul buck-eod Puarivedliy of the clircts. Oped to ony ‏ماه‎ database sysiews Cage-Ghippiag versus ‘Itew-Ghippiagy مه © ‘ones: Lockie Data Carktery ۰ ۰ ۰ © Lock ‏اون‎ Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO.

صفحه 15:
+ Octa Oervers (Ovu.) © Page-chippieg versus tew-chipptey © Gander vit oP shipper 3 ‏ددم جمد‎ © Work prePeichtag retiied ‏سر‎ dou wik requested tea © Page shippte maa be thownht oP ‏اد که مه‎ Bi Lookin: © Overhead oF requestiog cod yettoy locks Brow server is high dur io wessnp dehys ۶ Coa rant bebe co requested ond prePeiched tews; wil ‏اه سوم‎ traneuntizg t yrocted lock oo whole pace. © Locks vag prePeiched eww vod be (P{culed buck} by the server, ocd ‏مس ماه برط لصا‎ P the prePetched tec bos ot beeo used. © Locks va the paye co be deesodkted to locks vo tes tothe page uwheo there are lock oooPicts. Locks oo ucused tees coo thea be returced to Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 هدهو‎

صفحه 16:
Ota Gervers (Ovu.) ۳ ‏له مب‎ © ota naa be cached ‏مس ما مه مه و‎ © Bat cherk that data te upto-chte bePore tie used (cache ooherecny) © Check cas be doce wheo requesioe bro or det tor 1" Lock Okie © books ma be ‏لو‎ by choot syste eve ‏مس منوا و‎ © Dreux rtarine cached joke brdy, win costar server © Gerver cole beck locke Brow chews whee tl reveives ooPiotioy look request. Olea retires lock voce a loool ‏بای وا مس‎ ۰ شمسا هه لها ,ولج نا ملق و 4 Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. e010 ©Sbervehnts, Cork ced Cnakershe

صفحه 17:
ا حاص جاملجه كمد جمجوججدجمج جاصننجه خأه أصاصمكمت ‎Corde dotubase systews‏ © مه موه م۳ هم برط تحص ۲ ٩ ‏۴اه امه امه و اه من سطاسن الوم موه‎ powerPd Provessurs BD eee parcel or Por grate pandel warhrar vias thovscads of scar سیم ‎ores!‏ بوبم ولج م وناك 1 ‎Roe‏ مه هد اوه سا مه ‎of ashe‏ ام با ‎bouche‏ © امرس ۱ the ‏صصص‎ its subcotted Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. eon ©Sbervehnts, Cork ced Cnakershe

صفحه 18:
+ Opert-Dp aed Oode-Op موه وف موه موه وم موه لام لول و توق ۲ ‎ukick t O-toes keer.‏ © ‏تبط لسع(‎ speedup = sal systiew ekpsed ‏عد‎ ‏و ادص وم‎ ۱۹ tb brew P equation equi D. © ‏مس لوق‎ he tre oP butk the problew ocd the systew ۱۳ D-iwes ‏جام عجيمدا‎ ۰ ‏ی‎ by: soukeup = sul systew suwull problew ekypsed tke by syetew bry problew ekpsed tke © Code wp bea P equaira equds Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 هدهو‎

صفحه 19:
linear speedup sublinear speedu resources _ ——>- Speedup مه Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO.

صفحه 20:
linear scaleup sublinear scaleup} problem size ——>- Scaleup 2000 Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO.

صفحه 21:
رد + تمه نو © © © siete hace job} ippicd oP covet ‏اوه تسه لت صی تاول‎ © Ose oa OrKoes haxer copter 7a ‏اراس وا متا‎ © Drecwios odew! © Oxccern us swall queries subwited by tedepeudet were ty: skored ‏سم ما لو لول‎ ed ikmesharkry syste. نممو جه جعت( ‎subuitioy requests (heuwe,‏ صوص ‎Ores os wey‏ © وه ها )و ون هل ها و( من و ‎requests)‏ .مصتحوك عدم دز سای ۶ 0

صفحه 22:
وتا نت ود ‎Pobre Lacey‏ + تاد ماه ماه مه موه ‎peed oad‏ ی 0 ۲ ‏,عم و و وم و سا مه دا تج‎ sks, or locke) copes uh pack ‏اه‎ deus spear tere ‏رم‎ oc obser processes, rtker tras ‏وت خی تاو‎ ۲ ‏وا تماق‎ he dower of ‏سس بطم‎ ia service kee oF pad) execute fishes. Overdl execution kv detercoed by piowent oP parcel) exertion asko. Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 23:
+ 222222 k Dickies © ®w. Gpstew coxwpourds seu dota go ood receive ‏اجه و مت ول‎ ore ‏ها‎ ‎© Opes wt srde well wih teoreusieg ‏.ممصاصاسهم‎ © Qesk. Oowprueus ore ‏موی ا لته مه‎ is ‏وی له هن لصو‎ ۱ growiey cumber oP cowpoarcis, oad o7 sides beter. © Cu ww require OV chops 7 sud waren i con (or Vows ‏چاه تاه موه تون‎ ord). اجه وی روا لاه بو ولا مرا ل ‎ty ove cneher Fhe brary represectdions dPPer ia excl oe bt.‏ © amine ‏لاه بو‎ by bni(u) ober maxims ‏ممت لجو‎ reach each ther Ua a <oost by(a) hike; rehoes cow nicaira devs. Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 24:
Li (c) hypercube 100 Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO.

صفحه 25:
Pardes! Oadbosr Orcvkisviwres Bl Ohored wewery — ‏ون اه موم‎ EME ‏سای کل‎ 3 مم و تامجه وه له واه موم - مات لوق ۴ ‎ohh‏ Werachid — hybrid oP the cbove achieves Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 26:
9 (a) shared memory (b) shared disk (c) shared nothing ‏ری‎ hierarchical Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 27:
Ghkored Oewory © Crocessors oad dishs hove uovess to 0 ors wewory, picdiy vido bus or throu on ‏امه موه‎ © Cxrewey Pied cowonicaivs betwee provessors — deta io shored swewory ooo be uozessed by cay processor without hovteg to wove it usta ‏راو‎ سوه سم 66 7 96 مسا لو اه ع لس - تلم( ۲ ماما هن مسا وه موه عم چا با BE ‏نوا لت ری(‎ decrees oP parcel (P tr 8). Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. e008? ©Sbervehnts, Cork ced Cnakershe

صفحه 28:
6۵! ) ۲ Ol processors con dreniy uccess dl disks vic ‏جد‎ inieroooeericn oetvort, but the processors hove private wewories. © Vhe wewory bus ty wt u botlewerk © Orchtertre provides o deer of Paubolercae — Pu provessor Pals, the ker processors can toe over iis tasks ‏تال | مه‎ & residedt oo disks thot are ‏امه‎ Prow oll processors. ۲ Cxnopks: 100 Gpeplex ond OCC chistes (wow part oP Compan) reemicny cb (sew Orceke db) were ‏صوص ات رام‎ © Qourside: boleweck ww ooours ul fotercoweenivg to the dish subspstew. © Ghoeddeh systews coo sod too soe whet karger ouber oP provessurs, but nicdiod betuwerd processors ts slauwer. Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 29:
Okored Ovikiag ۲ Dede cowie of u processor, wewory, ood vor or wore disks. Provessors owe ode cornice wih: cover processor of corer ode ustay ot ‏مس‎ oetiwork. (B oode Puantioas os the server Por the dota oa te chests or dishes the ade muvce. ۴ ‏رل سا‎ Pardew, Orak-a COE BE Qa covessed Priny bod dhe (aud bed wewon aoresees) db oot rank tteroooenion oeiverk, hereby wisiotzin he ierPereae oP resmurre sharky. ۲ ‏لمجم جو وب لوط الما‎ of processors ‏.جسسموخاجها فجن‎ Bl Qua dracback cost of pow nization oad ‏مت مس ی للم‎ det ‏روموت موی ماو بو ار‎ ot bet pods, Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 30:
Weravkicd وله له اوه موه ان مه امین ۲ ملسم مه را له ی - باه را له وت اما بو ۲ له کاس ‎upto, cad de ont shore disks or wewory wil‏ موم سوه اس ویو روحم واه و چا ‎uk ode of he systew could‏ © ا 1# ‏,رهبا‎ euch ude could be o shorededsh spstew, god euch of the systews shorter a set oP disks could be ‏موم مه و‎ systew. اب لاو روا مه مه موم ‎Recker he cower‏ ۴ وجسد اوج تا (0000) اه رت منوت لسن سل ‎٩‏ Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 31:
۵ سای + © Oot spread over wuts vachices (us referred ty us sites ‏(وعلجه عه‎ site C ات با مس سا ۲ یطوط من ی روا اوه و © site A network jcommunication: via network site B Oxsdrer Gyre Onewpe -O* Cram, Gx O, OOOO. 0.80

صفحه 32:
+ Ovrrinied Ocrixows بل لاس عم ۲ ‎sites‏ موه لصوم سا رو طل اه ون مرول مرو ‎Gove‏ © ‎hides details oP ddetrbutcc‏ ۱ عمط لاد ‎eter‏ ‏اه له من مرو امه سط0۳۳) © رایخ لخلسی ‎existe databases to provide‏ وس ‎Godt‏ © © OPPereutde betters broad ybal iraceurions © 0 tood ‏موه اوه‎ tote to the stile site of hick the ‏تسس‎ ‎uses ‏لوق‎ ‎ether uesses dota too ste dPPereot Pow the vor ot‏ مت ملق و ‎uvas tottoted or ouncesses dota tt severd dPP ered sites.‏ ما با مار ‎Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 33:
+ rate Ps ia Oetrinied Opsewe © Ghortoy dota — were of ve ste oble ty ove the dota reside of sore other sites. © Quay — eurk step oble ‏مه اجه و هط وا‎ dott stored lordly. Wither systew avotobliiy through redueddesy — dota coc be rephooted of recov sites, ced syste ooo Puaciog eved Po ste Potts. © Oscdvcokne! added cowplexity required to posure proper coordaiod ozo vile. © GP wore developwedt cvs. © Grecter poteuid Por buce. © Aeoreused provessien overhead, Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 34:
+ Chopleweukivs “wou Por Ovribued Oudbwes اه ول هل سل با سم وت ‎ceeded even‏ رو ۲ ۱ ما سا له ,و ‎just bePore‏ لت مس وه ‎Quer deo! cuck ste‏ © یی و وا مت ام © ‏ج221‎ ste ‏مهو وه و و نطو ی‎ P here io Pohure while ‏مت وی ۲ ود‎ ۲ 20 ‏واه موه وس وی‎ trowsuntiva wodels bused va persisirat ‏او له بو ,وت له موه‎ 0 ordol (aad deadock detection) required ‏يسو بجنا‎ ery be rete ip een des cae Betas of cbove is Oh CO Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 35:
)سین + ۲ ‏اد بو جا و او - (۱) یه مجملوورا‎ Due sed sevurophiod arrus, suck os a skrde bub ‏اه تاه‎ brake. ۲ Oke wee cetvorte (POs) — cowposed oP provessore deirbuied over u farce ‏ارو‎ ore. Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 36:
+ Detworks Types (Ova) B00 s wik crake coocevtre (ect the “lotercet) ore ceeded Por ‏و وا بو موی روج طبر‎ ۲ ‏او موم(‎ such us bois wtes ra work vo DBDs wit ‏تم‎ ۶) is replicated. © Opies ore propaguied tp repos periodical). ۶ Copies oP data way be updated todepeudecily. © Ovwseridizeble exevuioes vac tus result. (Resvhaiod is ‏شوه‎ ‎depended. Oxsdrer Gyetrw Oneewpe -O* Crim, Gui O, OOOO. ‏سا0 لح 0 لا سواه 1 مومه‎

صفحه 37:
Gad oP Okaper

Chapter 20: Database System Architectures Database System Concepts, 5th Ed. ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use Chapter 20: Database System Architectures  Centralized and Client-Server Systems  Server System Architectures  Parallel Systems  Distributed Systems  Network Types Database System Concepts - 5th Edition, Aug 22, 2005. 20.2 ©Silberschatz, Korth and Sudarshan Centralized Systems  Run on a single computer system and do not interact with other computer systems.  General-purpose computer system: one to a few CPUs and a number of device controllers that are connected through a common bus that provides access to shared memory.  Single-user system (e.g., personal computer or workstation): desk-top unit, single user, usually has only one CPU and one or two hard disks; the OS may support only one user.  Multi-user system: more disks, more memory, multiple CPUs, and a multi-user OS. Serve a large number of users who are connected to the system vie terminals. Often called server systems. Database System Concepts - 5th Edition, Aug 22, 2005. 20.3 ©Silberschatz, Korth and Sudarshan A Centralized Computer System Database System Concepts - 5th Edition, Aug 22, 2005. 20.4 ©Silberschatz, Korth and Sudarshan Client-Server Systems  Server systems satisfy requests generated at m client systems, whose general structure is shown below: Database System Concepts - 5th Edition, Aug 22, 2005. 20.5 ©Silberschatz, Korth and Sudarshan Client-Server Systems (Cont.)   Database functionality can be divided into:  Back-end: manages access structures, query evaluation and optimization, concurrency control and recovery.  Front-end: consists of tools such as forms, report-writers, and graphical user interface facilities. The interface between the front-end and the back-end is through SQL or through an application program interface. Database System Concepts - 5th Edition, Aug 22, 2005. 20.6 ©Silberschatz, Korth and Sudarshan Client-Server Systems (Cont.)  Advantages of replacing mainframes with networks of workstations or personal computers connected to back-end server machines:  better functionality for the cost  flexibility in locating resources and expanding facilities  better user interfaces  easier maintenance Database System Concepts - 5th Edition, Aug 22, 2005. 20.7 ©Silberschatz, Korth and Sudarshan Server System Architecture  Server systems can be broadly categorized into two kinds:  transaction servers which are widely used in relational database systems, and  data servers, used in object-oriented database systems Database System Concepts - 5th Edition, Aug 22, 2005. 20.8 ©Silberschatz, Korth and Sudarshan Transaction Servers  Also called query server systems or SQL server systems  Clients send requests to the server  Transactions are executed at the server  Results are shipped back to the client.  Requests are specified in SQL, and communicated to the server through a remote procedure call (RPC) mechanism.  Transactional RPC allows many RPC calls to form a transaction.  Open Database Connectivity (ODBC) is a C language application program interface standard from Microsoft for connecting to a server, sending SQL requests, and receiving results.  JDBC standard is similar to ODBC, for Java Database System Concepts - 5th Edition, Aug 22, 2005. 20.9 ©Silberschatz, Korth and Sudarshan Transaction Server Process Structure  A typical transaction server consists of multiple processes accessing data in shared memory.  Server processes   These receive user queries (transactions), execute them and send results back  Processes may be multithreaded, allowing a single process to execute several user queries concurrently  Typically multiple multithreaded server processes Lock manager process   More on this later Database writer process  Output modified buffer blocks to disks continually Database System Concepts - 5th Edition, Aug 22, 2005. 20.10 ©Silberschatz, Korth and Sudarshan Transaction Server Processes (Cont.)   Log writer process  Server processes simply add log records to log record buffer  Log writer process outputs log records to stable storage. Checkpoint process   Performs periodic checkpoints Process monitor process  Monitors other processes, and takes recovery actions if any of the other processes fail  E.g. aborting any transactions being executed by a server process and restarting it Database System Concepts - 5th Edition, Aug 22, 2005. 20.11 ©Silberschatz, Korth and Sudarshan Transaction System Processes (Cont.) Database System Concepts - 5th Edition, Aug 22, 2005. 20.12 ©Silberschatz, Korth and Sudarshan Transaction System Processes (Cont.)  Shared memory contains shared data  Buffer pool  Lock table  Log buffer  Cached query plans (reused if same query submitted again)  All database processes can access shared memory  To ensure that no two processes are accessing the same data structure at the same time, databases systems implement mutual exclusion using either  Operating system semaphores  Atomic instructions such as test-and-set  To avoid overhead of interprocess communication for lock request/grant, each database process operates directly on the lock table instead of sending requests to lock manager process  Lock manager process still used for deadlock detection Database System Concepts - 5th Edition, Aug 22, 2005. 20.13 ©Silberschatz, Korth and Sudarshan Data Servers  Used in high-speed LANs, in cases where  The clients are comparable in processing power to the server  The tasks to be executed are compute intensive.  Data are shipped to clients where processing is performed, and then shipped results back to the server.  This architecture requires full back-end functionality at the clients.  Used in many object-oriented database systems  Issues:  Page-Shipping versus Item-Shipping  Locking  Data Caching  Lock Caching Database System Concepts - 5th Edition, Aug 22, 2005. 20.14 ©Silberschatz, Korth and Sudarshan Data Servers (Cont.)   Page-shipping versus item-shipping  Smaller unit of shipping  more messages  Worth prefetching related items along with requested item  Page shipping can be thought of as a form of prefetching Locking  Overhead of requesting and getting locks from server is high due to message delays  Can grant locks on requested and prefetched items; with page shipping, transaction is granted lock on whole page.  Locks on a prefetched item can be P{called back} by the server, and returned by client transaction if the prefetched item has not been used.  Locks on the page can be deescalated to locks on items in the page when there are lock conflicts. Locks on unused items can then be returned to server. Database System Concepts - 5th Edition, Aug 22, 2005. 20.15 ©Silberschatz, Korth and Sudarshan Data Servers (Cont.)   Data Caching  Data can be cached at client even in between transactions  But check that data is up-to-date before it is used (cache coherency)  Check can be done when requesting lock on data item Lock Caching  Locks can be retained by client system even in between transactions  Transactions can acquire cached locks locally, without contacting server  Server calls back locks from clients when it receives conflicting lock request. Client returns lock once no local transaction is using it.  Similar to deescalation, but across transactions. Database System Concepts - 5th Edition, Aug 22, 2005. 20.16 ©Silberschatz, Korth and Sudarshan Parallel Systems  Parallel database systems consist of multiple processors and multiple disks connected by a fast interconnection network.  A coarse-grain parallel machine consists of a small number of powerful processors  A massively parallel or fine grain parallel machine utilizes thousands of smaller processors.  Two main performance measures:  throughput --- the number of tasks that can be completed in a given time interval  response time --- the amount of time it takes to complete a single task from the time it is submitted Database System Concepts - 5th Edition, Aug 22, 2005. 20.17 ©Silberschatz, Korth and Sudarshan Speed-Up and Scale-Up  Speedup: a fixed-sized problem executing on a small system is given to a system which is N-times larger.  Measured by: speedup = small system elapsed time large system elapsed time   Speedup is linear if equation equals N. Scaleup: increase the size of both the problem and the system  N-times larger system used to perform N-times larger job  Measured by: scaleup = small system small problem elapsed time big system big problem elapsed time  Scale up is linear if equation equals 1. Database System Concepts - 5th Edition, Aug 22, 2005. 20.18 ©Silberschatz, Korth and Sudarshan Speedup Speedup Database System Concepts - 5th Edition, Aug 22, 2005. 20.19 ©Silberschatz, Korth and Sudarshan Scaleup Scaleup Database System Concepts - 5th Edition, Aug 22, 2005. 20.20 ©Silberschatz, Korth and Sudarshan Batch and Transaction Scaleup   Batch scaleup:  A single large job; typical of most database queries and scientific simulation.  Use an N-times larger computer on N-times larger problem. Transaction scaleup:  Numerous small queries submitted by independent users to a shared database; typical transaction processing and timesharing systems.  N-times as many users submitting requests (hence, N-times as many requests) to an N-times larger database, on an N-times larger computer.  Well-suited to parallel execution. Database System Concepts - 5th Edition, Aug 22, 2005. 20.21 ©Silberschatz, Korth and Sudarshan Factors Limiting Speedup and Scaleup Speedup and scaleup are often sublinear due to:  Startup costs: Cost of starting up multiple processes may dominate computation time, if the degree of parallelism is high.  Interference: Processes accessing shared resources (e.g.,system bus, disks, or locks) compete with each other, thus spending time waiting on other processes, rather than performing useful work.  Skew: Increasing the degree of parallelism increases the variance in service times of parallely executing tasks. Overall execution time determined by slowest of parallely executing tasks. Database System Concepts - 5th Edition, Aug 22, 2005. 20.22 ©Silberschatz, Korth and Sudarshan Interconnection Network Architectures  Bus. System components send data on and receive data from a single communication bus;    Does not scale well with increasing parallelism. Mesh. Components are arranged as nodes in a grid, and each component is connected to all adjacent components  Communication links grow with growing number of components, and so scales better.  But may require 2n hops to send message to a node (or n with wraparound connections at edge of grid). Hypercube. Components are numbered in binary; components are connected to one another if their binary representations differ in exactly one bit.  n components are connected to log(n) other components and can reach each other via at most log(n) links; reduces communication delays. Database System Concepts - 5th Edition, Aug 22, 2005. 20.23 ©Silberschatz, Korth and Sudarshan Interconnection Architectures Database System Concepts - 5th Edition, Aug 22, 2005. 20.24 ©Silberschatz, Korth and Sudarshan Parallel Database Architectures  Shared memory -- processors share a common memory  Shared disk -- processors share a common disk  Shared nothing -- processors share neither a common memory nor common disk  Hierarchical -- hybrid of the above architectures Database System Concepts - 5th Edition, Aug 22, 2005. 20.25 ©Silberschatz, Korth and Sudarshan Parallel Database Architectures Database System Concepts - 5th Edition, Aug 22, 2005. 20.26 ©Silberschatz, Korth and Sudarshan Shared Memory  Processors and disks have access to a common memory, typically via a bus or through an interconnection network.  Extremely efficient communication between processors — data in shared memory can be accessed by any processor without having to move it using software.  Downside – architecture is not scalable beyond 32 or 64 processors since the bus or the interconnection network becomes a bottleneck  Widely used for lower degrees of parallelism (4 to 8). Database System Concepts - 5th Edition, Aug 22, 2005. 20.27 ©Silberschatz, Korth and Sudarshan Shared Disk  All processors can directly access all disks via an interconnection network, but the processors have private memories.  The memory bus is not a bottleneck  Architecture provides a degree of fault-tolerance — if a processor fails, the other processors can take over its tasks since the database is resident on disks that are accessible from all processors.  Examples: IBM Sysplex and DEC clusters (now part of Compaq) running Rdb (now Oracle Rdb) were early commercial users  Downside: bottleneck now occurs at interconnection to the disk subsystem.  Shared-disk systems can scale to a somewhat larger number of processors, but communication between processors is slower. Database System Concepts - 5th Edition, Aug 22, 2005. 20.28 ©Silberschatz, Korth and Sudarshan Shared Nothing  Node consists of a processor, memory, and one or more disks. Processors at one node communicate with another processor at another node using an interconnection network. A node functions as the server for the data on the disk or disks the node owns.  Examples: Teradata, Tandem, Oracle-n CUBE  Data accessed from local disks (and local memory accesses) do not pass through interconnection network, thereby minimizing the interference of resource sharing.  Shared-nothing multiprocessors can be scaled up to thousands of processors without interference.  Main drawback: cost of communication and non-local disk access; sending data involves software interaction at both ends. Database System Concepts - 5th Edition, Aug 22, 2005. 20.29 ©Silberschatz, Korth and Sudarshan Hierarchical  Combines characteristics of shared-memory, shared-disk, and shared-nothing architectures.  Top level is a shared-nothing architecture – nodes connected by an interconnection network, and do not share disks or memory with each other.  Each node of the system could be a shared-memory system with a few processors.  Alternatively, each node could be a shared-disk system, and each of the systems sharing a set of disks could be a shared-memory system.  Reduce the complexity of programming such systems by distributed virtualmemory architectures  Also called non-uniform memory architecture (NUMA) Database System Concepts - 5th Edition, Aug 22, 2005. 20.30 ©Silberschatz, Korth and Sudarshan Distributed Systems  Data spread over multiple machines (also referred to as sites or nodes).  Network interconnects the machines  Data shared by users on multiple machines Database System Concepts - 5th Edition, Aug 22, 2005. 20.31 ©Silberschatz, Korth and Sudarshan Distributed Databases    Homogeneous distributed databases  Same software/schema on all sites, data may be partitioned among sites  Goal: provide a view of a single database, hiding details of distribution Heterogeneous distributed databases  Different software/schema on different sites  Goal: integrate existing databases to provide useful functionality Differentiate between local and global transactions  A local transaction accesses data in the single site at which the transaction was initiated.  A global transaction either accesses data in a site different from the one at which the transaction was initiated or accesses data in several different sites. Database System Concepts - 5th Edition, Aug 22, 2005. 20.32 ©Silberschatz, Korth and Sudarshan Trade-offs in Distributed Systems  Sharing data – users at one site able to access the data residing at some other sites.  Autonomy – each site is able to retain a degree of control over data stored locally.  Higher system availability through redundancy — data can be replicated at remote sites, and system can function even if a site fails.  Disadvantage: added complexity required to ensure proper coordination among sites.  Software development cost.  Greater potential for bugs.  Increased processing overhead. Database System Concepts - 5th Edition, Aug 22, 2005. 20.33 ©Silberschatz, Korth and Sudarshan Implementation Issues for Distributed Databases  Atomicity needed even for transactions that update data at multiple sites  The two-phase commit protocol (2PC) is used to ensure atomicity  Basic idea: each site executes transaction until just before commit, and the leaves final decision to a coordinator  Each site must follow decision of coordinator, even if there is a failure while waiting for coordinators decision  2PC is not always appropriate: other transaction models based on persistent messaging, and workflows, are also used  Distributed concurrency control (and deadlock detection) required  Data items may be replicated to improve data availability  Details of above in Chapter 22 Database System Concepts - 5th Edition, Aug 22, 2005. 20.34 ©Silberschatz, Korth and Sudarshan Network Types  Local-area networks (LANs) – composed of processors that are distributed over small geographical areas, such as a single building or a few adjacent buildings.  Wide-area networks (WANs) – composed of processors distributed over a large geographical area. Database System Concepts - 5th Edition, Aug 22, 2005. 20.35 ©Silberschatz, Korth and Sudarshan Networks Types (Cont.)  WANs with continuous connection (e.g. the Internet) are needed for implementing distributed database systems  Groupware applications such as Lotus notes can work on WANs with discontinuous connection:  Data is replicated.  Updates are propagated to replicas periodically.  Copies of data may be updated independently.  Non-serializable executions can thus result. Resolution is application dependent. Database System Concepts - 5th Edition, Aug 22, 2005. 20.36 ©Silberschatz, Korth and Sudarshan End of Chapter Database System Concepts, 5th Ed. ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

51,000 تومان