فیزیکتحقیق و پژوهشعلوم پایه

اندازه گیری ضعیف کوانتومی

90 صفحه
617 بازدید
12 شهریور 1401

صفحه 1:

صفحه 2:

صفحه 3:
ا . roy yee)

صفحه 4:

صفحه 5:
22001 re ea Pee 27 ae ۳

صفحه 6:
Going quantum... Teeter ee kee eee ۱۰ ‏وت‎ ‏هه تا متا‎ ۱ ‏ی‎ cag ite Bae coneCleny ‏ل‎ ta ere Te ero ‏نهر ععة بمترع اءوس لمع توترام عط صذ امصقط عنامي‎ connected to it; it already exists. Tuning into ۱ ‏“رالقدمةمعغص‎ ‎۱ ia recone Tena ae Teast etre tines ‏معصذ عدوم هلام مع و‎ ۱ Racer Rea ‏طذ مامی‌کنجمه هی عمط ععمعنعدمت مه معصهمععط‎ ‏یاو ار تا‎ ed Pree Ce rer Tes)

صفحه 7:
5 3 oe ‏ات‎ ‎۸ 7 BE:

صفحه 8:
2 ۱1 كار 0 ۳/7 Lb ‏لو 54 وت‎ a gL ۳7 8

صفحه 9:
0 ‏و‎ 0 5 5 RAL PATROLS) wierd 0 we ae i ollil bb gerd ‏د كاه دشن ب امدازه بيرى در أواوم‎ ©) ۱

صفحه 10:
سل ار روتوم . یی و 9 ان ‎Oe aes‏ ۰ ©

صفحه 11:
۱ مر مر 7 171 11

صفحه 12:
| yaad 711 ا تم 12 ی

صفحه 13:
۰ pT BAG

صفحه 14:
De POVM Q ide ia 0 14

صفحه 15:
انراژه ری موایر

صفحه 16:
Then

صفحه 17:
۳ ۳

صفحه 18:
۵ نا دكيرى بى مام 04 01س

صفحه 19:
سك 0 تال پیز ییا ترا اه ‎changes with observation.‏ ‎Quantum Bayesianism says.‏ ‎reality is observation.‏ 0۵۳۷65 ۵۴ ۱0۶20 2 9 0 0 روه maybe observers 1 / are just updating their knowledge. 19

صفحه 20:
0 2 ۰ = 1 ۳ ۳2/۳ dP ۲ ar 4) 7

صفحه 21:
2000000 3 ‎RATT oF‏ ون یی داهتل قون وبا رسد فاثوكيرى a 4 وراه ل ون #ومان و وتلر ‎ee ۱‏ + و

صفحه 22:
۰ TT 0 PL SCHRODINGER'S CAT 200

صفحه 23:
۰ Quantum physics tell us that nothing that is observed is unaffected by the observer. ‏تحت یی ات پیت اعدا ع رز‎ holds an enormous and powerful insight. It means that everyone sees a different truth, a because everyone is creating what they see ۲ 5 ۲ ‏ها‎ ‎20 ‏روطرو‎ Ree eee hee teen & 2) —— 23

صفحه 24:
و ‎e‏ ‏یی کل ‎Ae a ۷ ODT Te a‏ عدم ست اسار بل نزوي کی ۰ هه ویو 24 يردى ند سال

صفحه 25:
ree 7 0 25

صفحه 26:
ود ۰ ‎gers‏ وو دار ال ‎205 ‎ ‎ ‎Mee 00 ‎2 ‎ ‏م 6 000 0 2

صفحه 27:
2005 و و مر 200 ”7 م0 ‎aa‏ عفر

صفحه 28:

صفحه 29:
9 ‏نال‎ ye U(r)W(t) = W(t +7) Ut(r)w(t +7) —r)u(t +7)

صفحه 30:
۲ 2 19 Ended

صفحه 31:
‎gales‏ وو بروار ما ‎ ‎P(gjla) - |)۵ ‎

صفحه 32:

صفحه 33:
ts in the state |@), the combined initial s 5 ) vo ems erac the Hamiltonian H = A® B, which gener e [-éxtH] (in units where fh = 1), where the "interactio rength", 26 13 0 e time ‏ع8‎ d interaction time ¢ and that A = xAt is sm:

صفحه 34:
s only necessary to expand the unitary to a low order in perturbation theory, we call this . Fur that the unitary is predominately the identity small, implies that the state after the interaction is not radically diff mbined state of the system after interaction is Now we perform a measurement on the ancilla to find out about the system, this is known as an il ‘oupled me: ment. We will consider measurements in a s |q) (on the ancilla system) sueh that >, |q I. The measurement's action on both sy bed by the action of the tors ‏ول‎ > ۲ ® |q)(q| on the joint state |W"). From quantum measurement theory we know the conditional state after the measurement is

صفحه 35:
11, |¥') Vw ine) _ Laid) — tAA(qIBl9) 5X? A? (q|B |) N ۲, = where MV = /(8]1,[W7) is a normalization factor for the wavefunction. Notice the ancilla system state records the outcome of the measurement The object M, := I(q\¢) — iAA(q|B\9) — ia? (q|B?|¢) is an operator on the system Hilbert space and is called a Kraus operator. ‎al” ig).‏ _- رس ‎(¢b|Mj Mg |) ‎

صفحه 36:
to the Kr The objects By are elements of the corresponding probabilities sum to unity Ey |p is no longer > th the primary ‏,د‎ it is simply recording th measurement, we ca ace over it. Doing so gi

صفحه 37:

صفحه 38:
] use the canonical example of ¢ ian Kraus operators given by Barchielli, Lanz, Prosperi;231 Caves and Milburn.27) Take H = 2 @ p, where the position and momentum on have the usual Canonical commutation relation [x, p] = 4. Take the initial wavefunction of the ancilla to have d on

صفحه 39:
( (q| exp[—iz @ p]|®) ) exp[-(q- (2702)4/4

صفحه 40:
‘ion is often seen in the literature. Using the in write , we f2a'da'|2') (2! >onding POVM element E(q) = Mj M, which obey [dq E(q) =I. An altern l rep ntation o

صفحه 41:
articular limit these operators limit to a n; for oth es 0 - » the me: nent as finite-strength, surement is weak.

صفحه 42:
ae ae سس 1 تفر وشن راز

صفحه 43:
وی روف ع

صفحه 44:
Determining Complementary Properties with Quantum Clones G.S. Thekkadath,” R. Y, Saaltink, L. Giner, and J.S. Lundeen partment of Physics, Centre for Research in Photonics, University of Ottawa, 25 Templeton Sireei, Ottawa, Omario KIN 6N5, Canada (Received 4 April 2017; revised manuscript received 2 May 2017; published 4 August 2017) In a classical world, simultaneous measurements of complementary properties (e.g., position and mentum) givea system’s state. In quantum mechanics, measnrement-induced disturbance is largest for complementary properties and, hence, limits the precision with which such properties can be determined simultaneously. It is tempting try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics, Here, we investigate using the closest quantum analog to this copying strateay, optimal cloning The coherent portion of the generated clones’ state comesponds to “twins” of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the ut system. For complementary observables, this joint measurement gives the system’s state. just asin the classical case. We demonstrate this experimentally using polarized single photons

صفحه 45:
ی روف ‎١‏ 4 45

صفحه 46:
46

صفحه 47:
انا ‎matt 5‏ كاد 520100 0 3 9۱ سوت ای 1:۷ ‎(cor‏ ‎Fa‏ ۹ Gt. 5 6 0 7

صفحه 48:

صفحه 49:

صفحه 50:
9 ل ره ايه ‎oll‏ 7 ی ‎Je‏ Weak meas nt: Effect of the detector dynamics

صفحه 51:

صفحه 52:
©1111 1711© 1101 ,1621111 1121211113113 ©1121 11ل ‎eA‏ ا ل ا رز

صفحه 53:
Giulia Rubino un

صفحه 54:
Pediatrics © vount sina Doctors ASSISTANT CLINICAL PROFESSOR | Pedia Specialties: Pediatrics, Pediatric Emergency Medicine Languag Hospital affiliations: Mount Sinai Seth israel, The Mi Mount Sinai Queens, Mount Sinai Morningside and Mou Patient Experience Rating

صفحه 55:
communications physics ARTICLE [hein 0 x04/n120050200 74 | Quantum superposition of thermodynamic evolutions with opposing time's arrows

صفحه 56:
=e Be a3 Sua 22 =5 Ee =2 z fi & =

صفحه 57:
٠ 6 aes ‏پر‎ 5 0000 ae ‏م‎ Measurement of weak values for all powers of an observable ane San IMAM KHOMEINI INTERNATIONAL UNIVERSITY

صفحه 58:
© wn

صفحه 59:
ار ار اب ‎es‏ ‏روش اداه ليرى شر الات أواوى مو ا اسساده اذ اداه ليرى شعيك Procedure for Direct Measurement of General Quantum States Using Weak Measurement Jeff S. Lundeen*

صفحه 60:
How (not) to understand weak @ measurements of velocities How (not) to understand weak measurements of velocities

صفحه 61:

صفحه 62:
YI WC ۱۱۱۷۵۵ Malaysia PAHANG

صفحه 63:
۵ Experimental Demonstration of Higher Precision Weak-Value- Based Metrology ‏عرق‎ Power Recycling Maen ys | he

صفحه 64:
۵ Undoing a weak quantum measurement of a solid-state qubit Undoing a weak quantum measurement of a solid-state qubit

صفحه 65:

صفحه 66:

صفحه 67:
٠ 600 0 وكيرى شيف 14 1111110 بررسى ارتباط بين غير كلاسيكى در اندازهكيرى ضعيف با غي ركلاسيكى كلاوبر براى نور گرمایی|

صفحه 68:
Reversing the weak quantum measurement for a photonic Reversing the weak quantum ~ measurement for a photonic qubit

صفحه 69:
Optimization of a quantum weak 2116 111121

صفحه 70:
Optimization of a quantum weak measurement system with its working areas Yanc Xu,"* Lixuan Sui,'** Tian Guan,"® Cuma Guo,"* Donemel Li,* YUuXUAN YANG,'® XIANGNAN WANG,"® LUYUAN XiE,'* YONGHONG HE," AND Wenyue Xie** Abstract: Phase-seasitive sms have been receiving amount of attention. In this paper, We introduce a series of weak measurement working are By adjust pre-seleetion and post-selection ud the total phase difference betw vertically polarized light and horizontally polarized light, the measurement of the weak valus amplified by several tames in one system Tis applicability is verified m a label-i intemal reflection system. Tht sensitivity and resolution are impro ‘working areas, reaching 1.85 unv/effactive index unit (RIU) and 8 1 Amesiomuader the ts ofthe OSA Of oer a polatr,

صفحه 71:
pe 5 0 Oe 15 ACA 0 اپتومکا اندازه كيرى نيروى ضعيف در سيستم ايتومكانيكى

صفحه 72:
IB SU ‏یاب | ات‎ ey ro 0 20 ‏ری تست‎ 24 ۳ 1/7

صفحه 73:

صفحه 74:
Observing the Average Trajectories of Single Photons in a Two-Slit ۱1/1222 ‏جع‎ 14

صفحه 75:
Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer Sacha Kocsis,'?* Boris Braverman, * Sylvain Ravets,>* Martin J. Ste L. Krister Shalm,*> Aephraim M. Steinberg*t A consequence of the quantum mechanical uncertainty principle is that one may not discuss the path or “trajectory” that a quantum particle takes, because any measurement of position irrevocably disturbs the momentum, and vice versa, Using weak measurements, however, it is possible to operationally define a set of trajectories for an ensemble of quantum particles. We sent single photons emitted by a quantum dot through a double-slit interferometer and reconstructed these trajectories by performing a weak measurement of the photon momentum, postselected according to the result of a strong measurement of photon position in a series of planes. The results provide an observationally grounded description of the propagation of subensembles of quantum particles in a two-slit interferometer.

صفحه 76:
۵ Fig. 1. Experimental setup 107 116325117170 1: ۵ 21101011 112610115. 76

صفحه 77:
Post-selection polarization ‏مق ما جاح‎ ۹۸۵ ; e¥211)). A QWP and a beam dis placer are used to méssure the polarization of the photons in the circular basis, allowing the weak momentum value k to be extracted. A cooled CCD ‘measures the final x position of the photons. Lenses LL L2, and L3 allow different imaging planes to be measured. The polarization states of the photons are represented on the Poincaré sphere, here the six compass points ‘correspond tothe polarization states lH) IV),1D)1A) = bil) = IV), lL) WH) + ilU)), and R) = LAH) avy) Measurement |e im tate Preparation Fig. 1. Experimental setup for measuring the average photon trajectories Single photons from an InGaAs quantum dot are split on a 50:50 beam spliter and then outcoupled from two collimated fiber couplers that act as double sits. A polarzer prepares the photons with a diagonal polarization 1D) = AIH) + IW). Quarter waveplates (QWP) and half waveplates (HWP) before ite polarizer allow the number of photons passing through each slit to be varied. The weak measurement & performed by using a 0.7-mm-thick pike of calcite with its optic axis at 42° in the x-z plane that rotates the

صفحه 78:
Fig. 2. Measured intensities (photon counts) of the two circular polarization components of |y, measured on the CCD screen (red and blue curves), 78

صفحه 79:

صفحه 80:
Fig. 39. The ‏ال تا‎ Lelc} trajectories 3 22 ensemble of single photons in the double- slit apparatus 80

صفحه 81:

صفحه 82:
_@ Fig. 4. The trajectories from Fig. 3 plotted on top of the measured probability density distribution. 4

صفحه 83:

صفحه 84:
A ۳/۳ ری افو ماس از رن رت # ‎a.‏

صفحه 85:

صفحه 86:
References 86

صفحه 87:
References 1. Feynman, R. P., Leighton, R.B., & Sands, M. The Feynman Lectures on Physics. vol. Il: Quantum Mechanics. New Millennium Edition. (Basic Books, New Dhue 0s 2. Taylor, G. I. Interference fringes with feeble light. Proc. Camb. Philos. Soc. 15, 114-115 (1909). 3. Bouwkamp, C. J. Diffraction theory. Rep. Prog. Phys. 17, 35-99 (1954). A. Otsuki, T. Diffraction by two parallel slits in a plane. J. Math. Phys. 19, 911-915 (1978). 5. Sachdeva, B. K. & Hurd, R. A. Diffraction by multiple slits at the interface between two different media. Can. J. Phys. 53, 1012-1021 (1975). 6. Zhang, Z. et al. Fabrication method of double-slit- grating for high resolution microspectrometers. Microelectron. Eng. 98, 147-150 (2012). 7 Chang PH. Kuo C Y & Chem RT. Wave eniitting

صفحه 88:
٠. 8. Luo, X. & Ishihara, T. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780 (2004). 9. Ravets, S. et al. Surface plasmons in the Young slit doublet experiment. J; Opt. Soc. Am. B 26, B28-B33 (2009). 10. Zia, R. & Brongersma, M. L. Surface plasmon polariton analogue to Young’s_ double-slit experiment. Nat. Nanotechnol. 2, 426-429 0۳00۵۴ ۱۷۱۱۱۵۱ M. C. et al. Single-plasmon interferences. Sci. Adv. 2, e1501574 (2016). 12. Zhao, B. & Yang, J. New effects in an 88 ultracompact Young’s double nanoslit with plasmon hybridization. New J. Phys. 15, 073024 (2013).

صفحه 89:
۰ Hsieh, B. Y. & Jarrahi, M. Analysis of periodic metallic nano- slits for efficient interaction of terahertz and optical waves at nanoscale dimensions. J. Appl. Phys. 109, 084326 (2011). 15. Beau, M. & Dorlas, T. C. Three-dimensional quantum slit diffraction and diffraction in time. Int. J. Theor Phys. 54, 1882- 1907 (2015). 16. Zhou, X. et aj. Enhanced optical transmission of non-coaxial double-layer gold nano-slit with slanted sidewall arrays. Solid State Commun. 152, 417-421 (2012). 17. Lee, H. J. et al. Off-centered double-slit metamaterial for elastic wave polarization anomaly. Sci. Rep. 7, 15378 (2017). 18. Ung, B. & Sheng, Y. Interference of surface waves in a metallic nanoslit. Opt. Express 15, 1182-1190 (2007). 19. Sanz, A. S., Borondo, F. & Bastiaans, M. J. Loss of coherence in double-slit diffraction experiments. Phys. Rev. A 71, 042103 0:8 8 . Matsumura, A., Ikeda, T. & Kukita, S. Parameter estimation by decoherence in the double-slit experiment. Phys. Lett. A 382, 1571-1580 (2018).

صفحه 90:
0

39,000 تومان