صفحه 1:
صفحه 2:
صفحه 3:
ا
.
roy yee)
صفحه 4:
صفحه 5:
22001 re ea Pee 27
ae ۳
صفحه 6:
Going quantum...
Teeter ee kee eee
۱۰ وت
هه تا متا
۱ ی cag ite Bae coneCleny
ل ta ere Te ero
نهر ععة بمترع اءوس لمع توترام عط صذ امصقط عنامي
connected to it; it already exists. Tuning into
۱ “رالقدمةمعغص
۱ ia recone Tena ae Teast
etre tines معصذ عدوم هلام مع و
۱ Racer Rea
طذ مامیکنجمه هی عمط ععمعنعدمت مه معصهمععط
یاو ار تا ed
Pree Ce rer Tes)
صفحه 7:
5
3
oe ات
۸ 7
BE:
صفحه 8:
2
۱1
كار 0 ۳/7
Lb لو 54 وت a gL ۳7
8
صفحه 9:
0 و 0 5
5 RAL
PATROLS) wierd
0 we
ae i ollil bb
gerd
د كاه دشن ب امدازه بيرى در أواوم
©)
۱
صفحه 10:
سل ار روتوم .
یی و 9 ان
Oe aes
۰ ©
صفحه 11:
۱
مر
مر
7
171
11
صفحه 12:
|
yaad 711
ا
تم 12
ی
صفحه 13:
۰ pT BAG
صفحه 14:
De
POVM Q
ide ia 0
14
صفحه 15:
انراژه ری موایر
صفحه 16:
Then
صفحه 17:
۳ ۳
صفحه 18:
۵
نا دكيرى بى مام 04 01س
صفحه 19:
سك
0 تال پیز ییا ترا اه
changes with observation.
Quantum Bayesianism says.
reality is observation.
0۵۳۷65 ۵۴ ۱0۶20 2 9
0
0 روه
maybe observers
1 /
are just updating
their knowledge.
19
صفحه 20:
0 2 ۰
= 1 ۳ ۳2/۳ dP
۲ ar 4) 7
صفحه 21:
2000000 3
RATT oF ون یی داهتل قون وبا رسد فاثوكيرى
a 4
وراه ل ون #ومان و وتلر
ee ۱ +
و
صفحه 22:
۰ TT
0 PL
SCHRODINGER'S CAT 200
صفحه 23:
۰ Quantum physics tell us
that nothing that is observed
is unaffected by the observer.
تحت یی ات پیت اعدا ع رز
holds an enormous and powerful insight.
It means that everyone sees a different truth,
a because everyone is creating what they see
۲
5 ۲ ها
20 روطرو Ree eee hee teen
& 2) ——
23
صفحه 24:
و e
یی کل
Ae a ۷ ODT Te a
عدم ست اسار بل نزوي کی
۰ هه ویو
24
يردى ند سال
صفحه 25:
ree 7 0
25
صفحه 26:
ود ۰
gers وو دار ال
205
Mee 00
2
م 6
000 0 2
صفحه 27:
2005
و و مر
200 ”7 م0 aa عفر
صفحه 28:
صفحه 29:
9 نال ye
U(r)W(t) = W(t +7)
Ut(r)w(t +7) —r)u(t +7)
صفحه 30:
۲ 2
19 Ended
صفحه 31:
gales وو بروار ما
P(gjla) - |)۵
صفحه 32:
صفحه 33:
ts in the state |@), the
combined initial s 5 ) vo ems erac the Hamiltonian
H = A® B, which gener e [-éxtH] (in units where fh = 1), where
the "interactio rength", 26 13 0 e time ع8 d interaction time
¢ and that A = xAt is sm:
صفحه 34:
s only necessary to expand the unitary to a low order in perturbation theory, we call this
. Fur that the unitary is predominately the identity
small, implies that the state after the interaction is not radically diff
mbined state of the system after interaction is
Now we perform a measurement on the ancilla to find out about the system, this is known as an
il ‘oupled me: ment. We will consider measurements in a s |q) (on the ancilla system)
sueh that >, |q I. The measurement's action on both sy bed by the action of the
tors ول > ۲ ® |q)(q| on the joint state |W"). From quantum measurement theory we know the
conditional state after the measurement is
صفحه 35:
11, |¥')
Vw ine)
_ Laid) — tAA(qIBl9) 5X? A? (q|B |)
N
۲, =
where MV = /(8]1,[W7) is a normalization factor for the wavefunction. Notice the ancilla system
state records the outcome of the measurement The object
M, := I(q\¢) — iAA(q|B\9) — ia? (q|B?|¢) is an operator on the system Hilbert space and is
called a Kraus operator.
al” ig). _- رس
(¢b|Mj Mg |)
صفحه 36:
to the Kr
The objects By are elements of
the corresponding probabilities sum to unity Ey |p
is no longer > th the primary ,د it is simply recording th
measurement, we ca ace over it. Doing so gi
صفحه 37:
صفحه 38:
] use the canonical example of ¢ ian Kraus operators given by Barchielli, Lanz, Prosperi;231
Caves and Milburn.27) Take H = 2 @ p, where the position and momentum on
have the usual Canonical commutation relation [x, p] = 4. Take the initial wavefunction of the ancilla
to have d on
صفحه 39:
(
(q| exp[—iz @ p]|®)
)
exp[-(q-
(2702)4/4
صفحه 40:
‘ion is often seen in the literature. Using the
in write
, we
f2a'da'|2') (2!
>onding POVM element
E(q) = Mj M,
which obey [dq E(q) =I. An altern
l rep ntation o
صفحه 41:
articular limit these operators limit to a
n; for oth es 0 - » the me: nent as finite-strength,
surement is weak.
صفحه 42:
ae ae
سس 1 تفر وشن راز
صفحه 43:
وی روف
ع
صفحه 44:
Determining Complementary Properties with Quantum Clones
G.S. Thekkadath,” R. Y, Saaltink, L. Giner, and J.S. Lundeen
partment of Physics, Centre for Research in Photonics, University of Ottawa,
25 Templeton Sireei, Ottawa, Omario KIN 6N5, Canada
(Received 4 April 2017; revised manuscript received 2 May 2017; published 4 August 2017)
In a classical world, simultaneous measurements of complementary properties (e.g., position and
mentum) givea system’s state. In quantum mechanics, measnrement-induced disturbance is largest for
complementary properties and, hence, limits the precision with which such properties can be determined
simultaneously. It is tempting try to sidestep this disturbance by copying the system and measuring each
complementary property on a separate copy. However, perfect copying is physically impossible in quantum
mechanics, Here, we investigate using the closest quantum analog to this copying strateay, optimal cloning
The coherent portion of the generated clones’ state comesponds to “twins” of the input system. Like perfect
copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins
are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the
ut system. For complementary observables, this joint measurement gives the system’s state. just asin the
classical case. We demonstrate this experimentally using polarized single photons
صفحه 45:
ی روف
١ 4
45
صفحه 46:
46
صفحه 47:
انا
matt 5
كاد
520100 0
3 9۱
سوت
ای 1:۷ (cor
Fa ۹
Gt.
5
6 0
7
صفحه 48:
صفحه 49:
صفحه 50:
9
ل ره ايه
oll 7 ی Je
Weak meas nt: Effect of the detector dynamics
صفحه 51:
صفحه 52:
©1111 1711© 1101 ,1621111 1121211113113 ©1121 11ل
eA ا ل ا رز
صفحه 53:
Giulia Rubino
un
صفحه 54:
Pediatrics
© vount sina Doctors
ASSISTANT CLINICAL PROFESSOR | Pedia
Specialties: Pediatrics, Pediatric Emergency Medicine Languag
Hospital affiliations: Mount Sinai Seth israel, The Mi
Mount Sinai Queens, Mount Sinai Morningside and Mou
Patient Experience Rating
صفحه 55:
communications
physics
ARTICLE
[hein 0 x04/n120050200 74 |
Quantum superposition of thermodynamic
evolutions with opposing time's arrows
صفحه 56:
=e
Be
a3
Sua
22
=5
Ee
=2
z
fi
&
=
صفحه 57:
٠
6
aes پر 5
0000 ae
م Measurement of weak values for all
powers of an observable
ane San
IMAM KHOMEINI
INTERNATIONAL UNIVERSITY
صفحه 58:
©
wn
صفحه 59:
ار ار اب es
روش اداه ليرى شر الات أواوى مو ا اسساده اذ اداه ليرى شعيك
Procedure for Direct Measurement of General Quantum States Using Weak Measurement
Jeff S. Lundeen*
صفحه 60:
How (not) to understand weak
@ measurements of velocities
How (not) to understand weak measurements of velocities
صفحه 61:
صفحه 62:
YI
WC
۱۱۱۷۵۵
Malaysia
PAHANG
صفحه 63:
۵
Experimental Demonstration of Higher Precision Weak-Value-
Based Metrology
عرق Power Recycling
Maen ys |
he
صفحه 64:
۵ Undoing a weak quantum measurement of a
solid-state qubit
Undoing a weak quantum measurement of a solid-state qubit
صفحه 65:
صفحه 66:
صفحه 67:
٠
600 0 وكيرى شيف
14 1111110
بررسى ارتباط بين غير كلاسيكى در اندازهكيرى ضعيف
با غي ركلاسيكى كلاوبر براى نور گرمایی|
صفحه 68:
Reversing the weak quantum
measurement for a photonic
Reversing the weak quantum ~
measurement for a photonic qubit
صفحه 69:
Optimization of a quantum weak
2116 111121
صفحه 70:
Optimization of a quantum weak measurement
system with its working areas
Yanc Xu,"* Lixuan Sui,'** Tian Guan,"® Cuma Guo,"* Donemel Li,*
YUuXUAN YANG,'® XIANGNAN WANG,"® LUYUAN XiE,'* YONGHONG HE,"
AND Wenyue Xie**
Abstract: Phase-seasitive sms have been receiving
amount of attention. In this paper, We introduce a series of weak measurement working are
By adjust pre-seleetion and post-selection ud the total phase difference betw
vertically polarized light and horizontally polarized light, the measurement of the weak valus
amplified by several tames in one system Tis applicability is verified m a label-i
intemal reflection system. Tht sensitivity and resolution are impro
‘working areas, reaching 1.85 unv/effactive index unit (RIU) and 8
1 Amesiomuader the ts ofthe OSA Of
oer a polatr,
صفحه 71:
pe 5 0 Oe
15 ACA
0 اپتومکا
اندازه كيرى نيروى ضعيف در سيستم ايتومكانيكى
صفحه 72:
IB SU یاب | ات ey ro 0 20
ری تست 24 ۳
1/7
صفحه 73:
صفحه 74:
Observing the Average Trajectories of
Single Photons in a Two-Slit
۱1/1222 جع
14
صفحه 75:
Observing the Average
Trajectories of Single Photons
in a Two-Slit Interferometer
Sacha Kocsis,'?* Boris Braverman, * Sylvain Ravets,>* Martin J. Ste
L. Krister Shalm,*> Aephraim M. Steinberg*t
A consequence of the quantum mechanical uncertainty principle is that one may not discuss
the path or “trajectory” that a quantum particle takes, because any measurement of position
irrevocably disturbs the momentum, and vice versa, Using weak measurements, however, it is
possible to operationally define a set of trajectories for an ensemble of quantum particles. We sent
single photons emitted by a quantum dot through a double-slit interferometer and reconstructed
these trajectories by performing a weak measurement of the photon momentum, postselected
according to the result of a strong measurement of photon position in a series of planes. The
results provide an observationally grounded description of the propagation of subensembles
of quantum particles in a two-slit interferometer.
صفحه 76:
۵
Fig. 1. Experimental setup
107 116325117170 1: ۵
21101011 112610115.
76
صفحه 77:
Post-selection
polarization مق ما جاح ۹۸۵ ; e¥211)). A QWP and a beam dis
placer are used to méssure the polarization of the photons in the circular
basis, allowing the weak momentum value k to be extracted. A cooled CCD
‘measures the final x position of the photons. Lenses LL L2, and L3 allow
different imaging planes to be measured. The polarization states of the
photons are represented on the Poincaré sphere, here the six compass points
‘correspond tothe polarization states lH) IV),1D)1A) = bil) = IV), lL)
WH) + ilU)), and R) = LAH) avy)
Measurement
|e im
tate Preparation
Fig. 1. Experimental setup for measuring the average photon trajectories
Single photons from an InGaAs quantum dot are split on a 50:50 beam
spliter and then outcoupled from two collimated fiber couplers that act as
double sits. A polarzer prepares the photons with a diagonal polarization
1D) = AIH) + IW). Quarter waveplates (QWP) and half waveplates (HWP)
before ite polarizer allow the number of photons passing through each slit
to be varied. The weak measurement & performed by using a 0.7-mm-thick
pike of calcite with its optic axis at 42° in the x-z plane that rotates the
صفحه 78:
Fig. 2. Measured intensities
(photon counts) of the two
circular polarization
components of |y, measured
on the CCD screen (red and
blue curves),
78
صفحه 79:
صفحه 80:
Fig. 39. The
ال تا Lelc}
trajectories 3 22
ensemble of single
photons in the double-
slit apparatus
80
صفحه 81:
صفحه 82:
_@
Fig. 4. The trajectories
from Fig. 3 plotted on top
of the measured
probability density
distribution.
4
صفحه 83:
صفحه 84:
A
۳/۳
ری افو ماس از رن رت #
a.
صفحه 85:
صفحه 86:
References
86
صفحه 87:
References
1. Feynman, R. P., Leighton, R.B., & Sands, M. The
Feynman Lectures on Physics. vol. Il: Quantum
Mechanics. New Millennium Edition. (Basic Books, New
Dhue 0s
2. Taylor, G. I. Interference fringes with feeble light. Proc.
Camb. Philos. Soc. 15, 114-115 (1909).
3. Bouwkamp, C. J. Diffraction theory. Rep. Prog. Phys. 17,
35-99 (1954).
A. Otsuki, T. Diffraction by two parallel slits in a plane. J.
Math. Phys. 19, 911-915 (1978).
5. Sachdeva, B. K. & Hurd, R. A. Diffraction by multiple
slits at the interface between two different media. Can. J.
Phys. 53, 1012-1021 (1975).
6. Zhang, Z. et al. Fabrication method of double-slit-
grating for high resolution microspectrometers.
Microelectron. Eng. 98, 147-150 (2012).
7 Chang PH. Kuo C Y & Chem RT. Wave eniitting
صفحه 88:
٠. 8. Luo, X. & Ishihara, T. Surface plasmon
resonant interference nanolithography technique.
Appl. Phys. Lett. 84, 4780 (2004).
9. Ravets, S. et al. Surface plasmons in the Young
slit doublet experiment. J; Opt. Soc. Am. B 26,
B28-B33 (2009).
10. Zia, R. & Brongersma, M. L. Surface plasmon
polariton analogue to Young’s_ double-slit
experiment. Nat. Nanotechnol. 2, 426-429
0۳00۵۴
۱۷۱۱۱۵۱ M. C. et al. Single-plasmon
interferences. Sci. Adv. 2, e1501574 (2016).
12. Zhao, B. & Yang, J. New effects in an
88 ultracompact Young’s double nanoslit with
plasmon hybridization. New J. Phys. 15, 073024
(2013).
صفحه 89:
۰ Hsieh, B. Y. & Jarrahi, M. Analysis of periodic metallic nano-
slits for efficient interaction of terahertz and optical waves at
nanoscale dimensions. J. Appl. Phys. 109, 084326 (2011).
15. Beau, M. & Dorlas, T. C. Three-dimensional quantum slit
diffraction and diffraction in time. Int. J. Theor Phys. 54, 1882-
1907 (2015).
16. Zhou, X. et aj. Enhanced optical transmission of non-coaxial
double-layer gold nano-slit with slanted sidewall arrays. Solid
State Commun. 152, 417-421 (2012).
17. Lee, H. J. et al. Off-centered double-slit metamaterial for
elastic wave polarization anomaly. Sci. Rep. 7, 15378 (2017).
18. Ung, B. & Sheng, Y. Interference of surface waves in a
metallic nanoslit. Opt. Express 15, 1182-1190 (2007).
19. Sanz, A. S., Borondo, F. & Bastiaans, M. J. Loss of coherence
in double-slit diffraction experiments. Phys. Rev. A 71, 042103
0:8
8 . Matsumura, A., Ikeda, T. & Kukita, S. Parameter estimation
by decoherence in the double-slit experiment. Phys. Lett. A 382,
1571-1580 (2018).
صفحه 90:
0