صفحه 1:
صفحه 2:
Symmetry
Motif: the fundamental part of a
symmetric design that, when
repeated, creates the whole pattern
Operation: some act that reproduces
the motif to create the pattern
Element: an operation located at a
particular point in space
صفحه 3:
تناع ([-2
Symmetry
Elements
1. Rotation
a. Two-fold
rotation 6
A Symmetrical Pattern
< 2
rotation
to reproduce
a motif ina 9
symmetrical
pattern
صفحه 4:
2-D Symmetry
Symmetry
Elements
1. Rotation 1 0 ا
a. Two-fold / Motif
rotation 6
yperation
سمس .قم 3609/2 =
rotation
to reproduce
۱ a motif ina 9
symmetrical
pattern
صفحه 5:
2-D Symmetry
Symmetry
Elements
1. Rotation ی سم ام و
a. Two-fold 6 first
rotation 5 \ operati
Cee re 3 \on step
\
= 360°/2 ۱ 0 |
rotation \ /
to reproduce secon¢ J
a motif ina لتساك 9 ۳
۱ aap سستد
symmetrical
pattern
صفحه 6:
تناع ([-2
Symmetry
Elements
1. Rotation تعسو We ioe i Se سک ها
a. Two-fold
rotation
Some familiar
objects have
an intrinsic
symmetry
صفحه 7:
تناع ([-2
Symmetry
Elements
1. Rotation سب هو عم هو موز Se
a. Two-fold
rotation
Some familiar
objects have
an intrinsic
symmetry
صفحه 8:
تناع ([-2
Symmetry
Elements
1. Rotation سب هو عم هو موز Se
a. Two-fold
rotation
Some familiar
objects have
an intrinsic
symmetry
صفحه 9:
تناع ([-2
Symmetry
Elements
1. Rotation سب هو عم هو موز Se
a. Two-fold
rotation
Some familiar
objects have
an intrinsic
symmetry
صفحه 10:
تناع ([-2
Symmetry
Elements
1. Rotation سب هو عم هو موز Se
a. Two-fold
rotation
Some familiar
objects have
an intrinsic
symmetry
صفحه 11:
تناع ([-2
Symmetry
Elements
1. Rotation سب هو عم هو موز Se
a. Two-fold
rotation
Some familiar
objects have
an intrinsic
symmetry
صفحه 12:
2-D Symmetry
Symmetry
Elements
1. Rotation
a. Two-fold
rotation
Some familiar
objects have
an intrinsic
Second 180° hr 8
bject baci: to its ortyinal
ation makes it
و وم وز motif here??
صفحه 13:
تناع ([-2
Symmetry Elements
1. Rotation
b. Three-fold
rotation ©
= 360°/3
rotation
to reproduce a
motif in a
symmetrical
pattern 9
صفحه 14:
تناع ([-2
Symmetry Elements
1. Rotation
b. Three-fold ——————————
rotation
= 360°/3
rotation
to reproduce a
motif in a
symmetrical
pattern
صفحه 15:
لتنا ([-2
Symmetry
Elements
1 Ratatian
6 6 6 ©
© © ها 2 A 5 a
و 9 9 و
3-fold 4-fold 6-fold
| لك ۲
2-0
symmeti y
1
1-fold
Objects wit!
u
identity
5-fold and > 6-fold rotations will not work in combination with
translations in crystals (as we shall see later). Thus we will exclude
them now.
صفحه 16:
4-fold, 2-fold, and 3-fold
rotations in a cube
Click on image to run
animation
صفحه 17:
تناع ([-2
Symmetry
Elements
2. Inversion (i) ‘
inversion through a 6
center to
reproduce a motif
in a symmetrical ٩
pattern
= symbol for an
inversion center
inversion is identical to
2-fold rotation in 2-D,
صفحه 18:
تناع ([-2
Symmetry
Elements
3. Reflection (m)
a “mirror plane”
reproduces a
motif
Reflection across 6
= symbol for a
mirror
ل لكك plane
صفحه 19:
2-[( تناع
We now have 6 unique 2-D symmetry
operations:
12203 54% 6M
Rotations are congruent operations
reproductions are identical
Inversion and reflection are enantiomorphic
operations
reproductions are “opposite-handed”
صفحه 20:
2-[( تناع
Combinations of symmetry elements are also possible
To create a complete analysis of symmetry about a
point in space, we must try all possible combinations
of these symmetry elements
In the interest of clarity and ease of illustration, we
continue to consider only 2-D examples
صفحه 21:
2-[( لتنا
Try combining a 2-fold rotation axis with a
mirror
صفحه 22:
2-[( تناع
Try combining a 2-fold rotation axis with a
mirror
Step 1: reflect ۱ 6/90
(could do either step first)
صفحه 23:
2-[( تناع
Try combining a 2-fold rotation axis with a
mirror
Step 1: reflect ۱ 6/90
Step 2: rotate (everything)
صفحه 24:
2-[( تناع
Try combining a 2-fold rotation axis with a
mirror
Step 1: reflect ۱ 6/90
Step 2: rotate (everything)
Is that all??
صفحه 25:
2-[( تناع
Try combining a 2-fold rotation axis with a
mirror
Step 1: reflect ۱ 6/90
Step 2: rotate pal
No! A second mirror is require
صفحه 26:
2-[( تناع
Try combining a 2-fold rotation axis with a
mirror
The result is Point Group 2mm
9
“2mm” indicates 2 ب
The mirrors are differen
(not equivalent by symmetry)
صفحه 27:
2-[( تناع
Now try combining a 4-fold rotation axis with
a mirror
صفحه 28:
2-[( تناع
Now try combining a 4-fold rotation axis with
a mirror
Step 1: reflect 6/90
صفحه 29:
2-[( تناع
Now try combining a 4-fold rotation axis with
a mirror
Step 1: reflect ۱ 6/90
Step 2: rotate 1 a
صفحه 30:
2-[( تناع
Now try combining a 4-fold rotation axis with
a mirror
Step 1: reflect ۱ 6/90
Step 2: rotate 2 a
0 ۱9
صفحه 31:
2-[( تناع
Now try combining a 4-fold rotation axis with
a mirror
Step 1: reflect ۱ 6/90
Step 2: rotate 3 م Oo
صفحه 32:
2-[( تناع
Now try combining a 4-fold rotation axis with
a mirror
Any other elements?
صفحه 33:
2-[( تناع
Now try combining a 4-fold rotation axis with
a mirror
Any other elements?
Yes, two more
mirrors e 9
صفحه 34:
2-[( تناع
Now try combining a 4-fold rotation axis with
a mirror
Any other elements?
9
Yes, two more
mirrors 0 9
Point group name?? سس
0 ۱9
صفحه 35:
2-[( تناع
Now try combining a 4-fold rotation axis with
a mirror
Any other elements?
Yes, two more
mirrors 0 9
Point group name??
4mm
Why not 0۱ 9
4mmmm?
صفحه 36:
تناع ([-2
3-fold rotation axis with a mirror creates point
group 3m
Why not 3mmm?
صفحه 37:
تناع ([-2
6-fold rotation axis with a mirror creates
point group 6mm
صفحه 38:
2-D Symmetry
All other combinations are either:
Incompatible
(2 + 2 cannot be done in 2-D)
Redundant with others already tried
m+m- 2mm because creates
2-fold
This is the same as 2 + m> 2mm
صفحه 39:
تناع ([-2
The original 6 elements plus the 4
combinations creates 10 possible 2-D Point
Groups:
12.3 4 6 m 2mm 3m 4mm 6mm
Any 2-D pattern of objects surrounding a
point must conform to one of these groups
صفحه 40:
3-D Symmetry
New 3-D Symmetry
Elements
4. Rotoinversion
a. 1-fold rotoinversion (1 ) @&
|
صفحه 41:
3-D Symmetry
New 3-D Symmetry
Elements
4. Rotoinversion
|
a. 1-fold rotoinversion (1 ) ۵ ۲
|
Step 1: rotate 360/1
(identity)
صفحه 42:
3-D Symmetry
New 3-D Symmetry
Elements
4. Rotoinversion
a. 1-fold rotoinversion (1 )
Step 1: rotate 360/1
(identity)
Step 2: invert
This is the same as i, so nota
اد دمم ی
صفحه 43:
3-D Symmetry
New Symmetry
Elements 2
45.565.
2. 2-5010 9
(2) |
Step 1: rotate 360/;
Note: this is a
temporary step, the
intermediate motif ——
صفحه 44:
3-D Symmetry
New Symmetry
Elements 2
45.565.
2. 2-5010
(2)
Step 1: rotate 360/;
Step 2: invert
صفحه 45:
3-D Symmetry
New Symmetry
Elements 2
45.565.
b. 2-fold rotoinversion ( 2 )
The result:
صفحه 46:
3-D Symmetry
New Symmetry
Elements
4. Rotoinversion
b. 2-fold rotoinversion
2)
This is the same as m,
so not anew
operation
صفحه 47:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
c. 3-fold rotoinversion ( 3 )
صفحه 48:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
c. 3-fold rotoinversion
3)
Step 1: rotate
3609/3
Again, this is a
temporary step,
the intermediate — لل
۱5 cy woe, IN ma aes Ss
صفحه 49:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
c. 3-fold rotoinversion
3)
Step 2: invert
through center
صفحه 50:
3-D Symmetry
New Symmetry
Elements 7
45.565.
c. 3-fold rotoinversion
(3)
Completion of the
first sequence
‘
صفحه 51:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
c. 3-fold rotoinversion
3)
Rotate another
360/3 #4
صفحه 52:
3-D Symmetry
New Symmetry
Elements an
4. Rotoinversion
c. 3-fold rotoinversion
(3)
Invert through
center
صفحه 53:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion _
c. 3-fold rotoinversion
3)
Complete second
step to create face
3
صفحه 54:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
c. 3-fold rotoinversion
3)
Third step creates
face 4
(3> (1) > 4)
صفحه 55:
3-D Symmetry
New Symmetry
Elements
4. Rotoinversion
c. 3-fold rotoinversion
3)
Fourth step creates
face 5 (4 (2) >
5)
صفحه 56:
3-D Symmetry
New Symmetry
Elements ive
4. Rotoinversion_
c. 3-fold rotoinversion
(3)
Fifth step creates
face 6
(5 > (3) > 6)
Sixth step returns to —
صفحه 57:
3-D Symmetry
New Symmetry 2
Elements a
4. Rotoinversion
c. 3-fold rotoinversion
This is unique
صفحه 58:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
d. 4-fold rotoinversion (
صفحه 59:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
d. 4-fold rotoinversion 4
(4) /
صفحه 60:
3-D Symmetry
V
New Symmetry
Elements
4. Rotoinversion
d. 4-fold rotoinversion
(4)
1: Rotate 360/4
صفحه 61:
3-D Symmetry
New Symmetry
Elements
4. Rotoinversion
d. 4-fold rotoinversion (
1: Rotate 360/4
2: Invert
صفحه 62:
3-D Symmetry
New Symmetry
Elements
4. Rotoinversion
d. 4-fold rotoinversion (
1: Rotate 360/4
2: Invert
صفحه 63:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
d. 4-fold rotoinversion ثم
C4)
3: Rotate 360/4 Vy
صفحه 64:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion ۱
d. 4-fold rotoinversion (
4
3: Rotate 4
4: Invert
صفحه 65:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion ۱
0. 4-1010 rotoinversion (
4)
3: Rotate 360/4
4: Invert
صفحه 66:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
d. 4-fold rotoinversion
C4)
5: Rotate 360/4
صفحه 67:
3-D Symmetry
New Symmetry
Elements 0
4. Rotoinversion
d. 4-fold rotoinversion
C4)
5: Rotate 360/4
6: Invert
صفحه 68:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
d. 4-fold rotoinversion
C4)
This is also a unique
operation
صفحه 69:
3-D Symmetry
New Symmetry
Elements a
4. Rotoinversion
d. 4-fold rotoinversion
(4)
A more fundamental
representative of the
pattern
صفحه 70:
3-D Symmetry
New Symmetry
Elements
4. Rotoinversion
e. 6-fold rotoinversion (6
)
Begin with this
framework:
صفحه 71:
3-D Symmetry
New Symmetry
Elements
4. Rotoinversion
e. 6-fold rotoinversion
(6)
صفحه 72:
3-D Symmetry
New Symmetry
Elements
4. Rotoinversion
e. 6-fold rotoinversion (
6)
صفحه 73:
3-D Symmetry
New Symmetry
Elements تس
4. Rotoinversion
e. 6-fold rotoinversion
(6)
صفحه 74:
3-D Symmetry
New Symmetry
Elements تس
4. Rotoinversion
e. 6-fold rotoinversion
(6)
صفحه 75:
3-D Symmetry
New Symmetry
Elements 5
4. Rotoinversion
e. 6-fold rotoinversion
(6)
صفحه 76:
3-D Symmetry
New Symmetry
Elements 5
4. Rotoinversion
e. 6-fold rotoinversion
(6)
صفحه 77:
3-D Symmetry
New Symmetry
Elements 5
4. Rotoinversion
e. 6-fold rotoinversion
(6)
صفحه 78:
3-D Symmetry
New Symmetry
Elements 5
4. Rotoinversion
e. 6-fold rotoinversion (
صفحه 79:
3-D Symmetry
New Symmetry
Elements 5-6
4. Rotoinversion
e. 6-fold rotoinversion
(6)
صفحه 80:
3-D Symmetry
New Symmetry
Elements 5-6
4. Rotoinversion
e. 6-fold rotoinversion
(6)
صفحه 81:
3-D Symmetry
New Symmetry
Elements 5
4. Rotoinversion
e. 6-fold rotoinversion
(6)
صفحه 82:
3-D Symmetry
New Symmetry
Elements o
4. Rotoinversion
3-fold rotation axis Top View
perpendicular to a
mirror plane
(combinations of elements سح
صفحه 83:
3-D Symmetry
Top, View
A
New Symmetry
Elements
4. Rotoinversion
e. 6-fold rotoinversion
(6)
A simpler pattern
صفحه 84:
3-D Symmetry
We now have 10 unique 3-D symmetry
operations:
re ل ا ل ee
Combinations of these elements are also possible
A complete analysis of symmetry about a point in
space requires that we try all possible combinations
of these symmetry elements
صفحه 85:
3-D Symmetry
3-D symmetry element combinations
a. Rotation axis parallel to a mirror
Same as 2-D
2 || m = 2mm
3||m=3m, also 4mm, 6mm
b. Rotation axis | mirror
21m =2/m
31m=3/m, also 4/m, 6/m
c. Most other rotations + m are
impossible
2-fold axis at odd angle to mirror?
Some cases at 45° or 30° are possible, as
Yeas Ce
صفحه 86:
3-D Symmetry
3-D symmetry element combinations
d. Combinations of rotations
2+ 2 at 90° — 222 (third 2 required
from combination)
9 = ۴ ) 422 900-۰ اج 2 + 4
)
64-2 at 90? > 622-(* te e
)
صفحه 87:
3-D Symmetry
As in 2-D, the number of possible
combinations is limited only by
incompatibility and redundancy
There are only 22 possible unique 3-D
combinations, when combined with the 10
original 3-D elements yields the 32 3-D
Point Groups
صفحه 88:
But it soon gets
hard to visualize
(or at least
portray 3-D on
paper)
Fig. 5.18 of Klein (2002)
Manual of Mineral Science,
John Wiley and Sons
صفحه 89:
3-D Symmetry
The 32 3-D Point Groups
Every 3-D pattern must conform to one
of them.
This includes every crystal, and every
سوب Rotatiowol Qrorwetry سس
[Potatiod axe eal 1 8 9 3
[Roteiawersion عفدت vole TED) | SEH)
Qombiwation Protalio ame an
Our retatios oiz + weiner Ow
مه ات | جات ملاس
1
einers 2im2im2im | ]
(Bidiiowal Gocortte pollens 9
Table 5.1 of Klein (2002) Manual of Mineral Science, John
Wiley and Sons
صفحه 90:
3-D Symmetry
The 32 3-D Point Groups
Regrouped by Crystal System
(more later when we consider
translations)
سس اسب Oe Orster Orater
Meliaic 0 a
Ovaveliaie Qo w)
Onkorkowbic: 8B ممه
Tetrawwasl 6 8 0669 iow, Fr
مه 68 9 او مومس
9 6 608 مت رمست |_ Geo, deo tw Geo
‘bowen a 48 Fa 9 5 An Aw
Table 5.3 of Klein (2002) Manual of Mineral Science, John
Wiley and Sons
صفحه 91:
a
al
43
uy
3-D Symmetry
The 32 3-D Point
Groups
After Bloss, Crystallography
and Crystal Chemistry. ©
MSA en)
fy ۳ ام
صفحه 92:
Flow Chart for Determining 3-D Point Group
‘Go, eet be oof the)
اس سس ند
tree
و
و و
| کت ml
wales: تان lm
Cues, mame متشه
sates
&”
مين سم
داه aa
0 ‘normal to n-fokd axes?
۳ بسي ليو سم
موز Yes ولو ves.
ae ۳ ات
eth |
ید سم سوت
م
eee خضت
wl on + ae
we كات Gaal دم
ای اه
wl لكا دده
“a
oo fl
صفحه 93:
3-D Symmetn Stereonet of Monoclinic (+) Axes
Crystal Axes
+C
Gye
3 8 a
We
y¥( pe 2
+4 000
Axial convention:
“Tight-hand rule”
Conventional 2-D
Projection
+a (front)
صفحه 94:
3-D Symmetry
Crystal Axes
Crystal Axes
Triclinic Monoclinic
2 ۰
b
b
at bee at bee
وعم عه 0, 0
‘The axes are chosen as parallel to the
principal face intersections. b is selected
as | to the 2-fold axis or 1 to the mirror.
‘The most pronounced zone is oriented
vertically and the zone axis is ¢. a slopes
down and forward so that fis typically > 90.
‘The axes are chosen as parallel tothe principal
face intersections. There are no symmetric
restrictions to the choice of @, b, and e, but, by
convention, the most pronounced zone is oriented
vertically and the zone axis is
صفحه 95:
3-D Symmetry
Crystal Axes
Crystal Axes
د Tetragonal
b
citer choice
az bee ومع یود بو 18 OK foraaxes
‘The axes are mutually perpendicular and | to ‘The axes are mutually perpendicular and e is
2-fold axes (conventionally ¢<a<b). When chosen to the 4-fold axis. Due to the 4-fold
crystals are elongated (as above left) eis chosen symmetry, the other two axes are equal. a is
as the direction of elongation. When crystals are oriented toward the front and a, to the right.
flattened (top insert), ¢ is chosen as normal
to the predominant plane.
صفحه 96:
3-D Symmetry
Trigonal
{also considered as the
rhombohedral division of
the Hexagonal system)
¢
a,
wa,
Crystal Axes
22
7
با
0
wh
Wa,
Crystal Axes
Hexagonal
wa,
wa,
either choise —™
isOK foraaxes (4) a
=a; #0
aZa=120; aZe=90
‘The Hexagonal system (and Trigonal sub-system) typically has four axes, three are of equal length
at 120 degrees to one another, and all_L to ¢, which is | to either the 3-fold or 6-fold rotation,
‘The conventional choice of the three a axes is shown in the inset.
صفحه 97:
3-D Symmetry
Crystal Axes
Crystal Axes
Isometric
dodecahedron
All three axes are mutually perpendicular and of equal length. They ere
set | tothe 4-fold axes (ifpresent), otherwise to te 2-fold axes.
all three forms combined
صفحه 98: