صفحه 1:
Chopter 09: Guevy Provessiag
صفحه 2:
wo
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO.
صفحه 3:
عجوو عووسرة1) برست) ۱۰ جم9ظ) مزوه)
Telational algebra
expression
execution plan
parser and
translator
). @arsicn, ced trocetatics
©. Optcrtzctics:
Ocsdrer Gyre Oncewp -O* Crim, Oxi ?, OOOO.
صفحه 4:
ما vad و ۲
© troehte the query iv ty toteroal Porc. Dhis tp thea troushited tnt rekticerd
و
© Parser checks syotex, ات او
۲ مسر
© Dhe qen-exevuivd coger tohes 0 quer -evotudiog phi, exevuier trot ptr,
wood returas the مكلا صا صصص query.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. we ©Sbervehnts, Cork ced Cnakershe
صفحه 5:
+ ®wir Gteps to Query Provessiay ! Opicoizaiva
وه موه روت سا رو موه ماو BO rekticad
ص eet (()ییرآآموممسسیر بت ۶
(( )دونو يي" )سن [آ
مسموكاناك امصصد خاه صمج عصاص لاله سا موه من ماود مت و ۲
دمد سره
رومت بحيب و لاه با نوی یماسا ناسون
سره om لس و وه مه الط زرط و له( ۳
Cox, con ee on ike oo bokrare tp Prd coconts wik boknee < CS0O, ©
© pee peforw owl relia sro ood discard umeructs wits bobo =
esoo
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. wo ©Sbervehnts, Cork ced Cnakershe
صفحه 6:
@wic Cteps: Opicotzciva (Ovd.)
۲ Query Opkotraton: @omnpt df equidedt evckniiva phos chover the oor wit:
اهاط
© Costis esitvoted ustay stisticd iPoreatica Proc the
ای ماو
۱3 tuples fo eur reticg, size oP tuples, ete.
4a this chopter we sty
© ی وا تسا query و
۶ عون ولو اما ماه ۳ لس
۰ اه وا و وه الط ۳ لو او و تیور
موه موی
062 سس 1۰ 18
اس ام مه مه لو queries, thot is, hous to وه و تما Oe int ©
اوه امه مسا
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. wo ©Sbervehnts, Cork ced Cnakershe
صفحه 7:
و +
© Costs تسه تسج رای elapsed tere Por oeewerteny query
© و۳ نوت contribute to thre ost
° deh urresers, OPO, or even vetwork cow micuticr
۱ she predocinnt cost, ond doy reltivel easy
wesc. امه اذا يكام برط لمجت(
۶ Durvber of seeks سس سم ها
© وا چاه لین( reed * امه
© ای( of blocks writen * averice-blcb-urite-orst
۱ Cost ip varie a block ts اما و ی و نومه ی
~ dot is reed bark oPier betay writes to posure thet the write
اوه رد
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. wor ©Sbervehnts, Cork ced Cnakershe
صفحه 8:
+ Deanree of Chery Cost Ora}
or skophciy we ist use he outer of block roosters Prow dts oer the ouster of
sens us te cost weasures
سا ی ات تا سا hy ©
© py ewe Por مه سس
© Oost Por b bck عم سا 6 seeks
bin tO *he
۲ Oe keore OPO costs Por steph
© Red systews do tohe OPO pps! tate cer uct
BE We ue oot eck cost to writen output to disk i 2a post Porat
Bl Geverd ckerthws cos reduce deb 10 by wien extra bubPer space
© Bonn oF red wewory woluble ty buPPer depeuds va ver pared queries
and OG processes, koowe شحو رد بای
* Oe Dew use worst cose esikvoies, خأن امه مج عل رای مج
رو ueeded Por the pperaiza ts avctkable
BE Required data way be beer resideut dread, avoickory dh VO
© Cita the ki oct مه اجه بو Ez
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. wo ©Sbervehnts, Cork ced Cnakershe
صفحه 9:
+ Getsvioa Operuiva
© te sews — seurck ckpritiws thot bode ord retieve revords thot PUP +
ین ماود
© Okprikw Od (few search). Groa rack Ale block ocd test ol records to see
whether they sutePy the selevio ooodtic.
© vet porate = & block iexmPers + (seeks
۱ | سل ounober of blocks evuttciegy records Pow retatica
© seevivg & 700 hey otirbute, co sippy oo Preorder, record
< oost = (b, 12) block علد 0 + حطس
© Liew search en be opted سس of
© selevtica عد الم
*ardertag oF records te the Pie, or
۲ سل اه امه
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. wo ©Sbervehnts, Cork ced Cnakershe
صفحه 10:
+ Oxbvtra Operctiva (Ova)
۲ 08 (beep seach). Oppiroble P seleviog fy on equdliy cowperisva oo the
مرت من هه Pie ts ordered.
© سوه وه بو ما هخا ما سا با موه
© pet peter (cuncber of dk blocks ty be screed):
poet oF ocak he Bist tiple bya biory search on the blocks
ابا * (in * to)
"AB kere one wnuligls بم بحاصف سسحت seer
~ Ok) roster cost of طساوا اه ای و records
that sutsPy selevtiza peedtion:
— Ol see how to evttrate this ost to Chapter 1
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 10.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 11:
مسططلت1/ ناس و +
لا مهف جوا اس - و بط ۲
.مصلا خن امه من با اه من شلد ۶
۱
ke correspoentery مه اوه
۶ عبسه 6+0 + 0
BOO (praca index oo wokey, equal) Rerteve walipke records.
© Revers ul be on وا مرهج
© beth = oxrober oP blocks evoracicny رای records
* جدومن * (In the) thot yb
BO (equal 7a search-hey oP sevoerckwy krdex).
© Retteve كماد ه record Phe searctehey te o rorrdchate hey
< جب) ع میسن (۳ (tp + te)
© Retteve wutiple records P searck-hey is ont a coackcate hey:
۲ بای of و uichiay records way be oa a dPPereat block
* له +6) د و9 "(tp * bo)
ا E;
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موه
صفحه 12:
+ اد ی Oonaea eon
۳ اه ماه لت بو the Pore Ope, (1) oF Oy. ofr) by wot
© hea Ale soon بصا جه search,
© or by له ری fa he Pooky une!
I ey ee ere ee) Ree eet oO)
< Por Op مه سس من Pied Prot ple > v7 ocd son rekiioa sequel
Brow tere
> یوت موق )( het soa rekiiva sequeukdy il Prost حصت ان صل إن < جاور keto
BO? (sevmnkey index, corre).
© Bor ری o(r) vee Rte y Prod Prot iecex eciy > vd sox جلما
فسوی Brow here, ty Pind porters 7 records.
© Por 69.0 (7) feet soem eck paves of dex جا مر بط Prot
ل < بصي
١ Aether cose, retteve records that are potted tt
requires oa VO Por euck record ~
— bicear Pie soos way be cheuper Eg
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 10.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 13:
وت او و دی ی +
۱ i)" yo" = alr)
B00 (courte sebvtira مجلم جمد راص
© اسلو a obra of 0, cad ckprthors (BC trou (BP that remus far he
beet ost Por oy, (1).
© Pept cher comics on ple Pier Betcha ht موخطلجا رو
۲ 96 ماش وی مه عسمبس) krber).
© Ose رسب cowprste (nutipe-hey) trdex P ovatkble.
B00 (corer seb سس روا of kbectPiers).
و لس نت یط یی ©
© Ose correspouday dex Por euch اه اه سول له ,مه
vbtdoed sets oP record potaiers.
© Dheu Peick records Prow Pie
© ۳ ول عون سرت ot hove upproprigie tudes, upply test in wewory.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 10.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 14:
و۰ و
ers). هل اه مت روا مایت عمط ) 0۵00 ۲
torches. عتالمره جرا میت له خا تلو ©
hear som. ی مس (
oP oh obraced sets موی لی رمطمت انس وا لبمس تا
oP record porters.
Dheu Peteh records Brow Pe ©
0 مسبت ۲
ام مه Doe brew ©
OB very Pew reverts satohy 70, cid as keke iF opphoube ty 0
tide oad Petck Proc Pier مت سم ماه لب(
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 10.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 15:
+ orien
© We way bud oo ها من بط rekon, vod feo use the iden t7 reud the rete fo
sorted order. (ay feud to vor disk block anvess Por pack tuple.
۲ ما hot Attorney, techoiquer the quicker co be weed. Por
ام با متیر Pi ia oer, extorad
له سا هبو choice.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 10.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 16:
+ @xered Gort Dore
Let O dew wewory size (ia power).
4. Orca sorted new. Let tbe 00 .تادهم
Reece tr fer Bile :وصتماص جملا خأت عمج جما ألا وجا
(6) Grad © Hooke of تس با مق
(leer eee tet
(6) Orte sorted data ty rust Ri و f
bet the Picral value oP tbe D
©. Derg the nme (cent stk)...
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 10.00
صفحه 17:
+ سس OortDerge (Ovu.)
©. Derg te nee (Or were). De wmnve (Por ww) tt D< ۰
(Ove O Docks oP wewory io buPPer iupul ruc, aad ( block to
buPPer puiput. Read the Pirst block oP eack rus iio is bubPer pace
۲ امم
۱
Ontte the record to the output buPPer. TP the output buPPer is Pull
طاسب it to chk.
record Prow ts taput bu Per page. با وه(
دمل رو و وج بط AB he
read the ora block (iP coy) oF te ror fay the bub Per.
©. well oop buPPer pages ore expt:
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 10.07 ©Sbervehnts, Cork ced Cnakershe
صفحه 18:
+ سس OortDerge (Ovu.)
O, severd were pases ar required. 02 الا
a eak poss, ooaiknous pups oF OD - nee oe werd. ©
© © pres امه با لس of rene by a Paci of DA, ord
ها مد و by the sae Partor.
> Gq. 1۳ ORC, od here ore 80 nes, coe poe redures the
ار of nvr i ©, rack UD kos the otze oF the total cer
© Repraed passes ore perPorered dl ne Rover brea conreed i
pw.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 10.00 ©Sbervehnts, Cork ced Cnakershe
صفحه 19:
14]
19
14
33
هه آج | آع آع
21
۳
e | 16|
AE!
ml 3
3
3
16
عماجم
outpul
merge
pass—2
19]
141
33|
311
16
24
14
21
16
[ه ابع] ه] وم
دع زه ]ع | ده
runs
merge
55-1
19
31
24
14
33
16
21
3
16
14
2
d
م
runs
24
19
31
¢ [33
b fig
e [16
6
d [21
os لبم
3
4217
د
initial
relation
create
runs,
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO.
صفحه 20:
+ @xtrad Der Oort (Oow.)
8 ددن os
© Pond هچ مه ده امه [lop q(b/D)|-
8) اوه Por intial ruc oreuive os well os ia rack puss iy Ob,
> Por Ped poss, we dot count wre cost
Por ofl operations sce the mip oP اوه را و جرب
اج ی موی he pres مه تا نوی موه los
۳
وه اما بوصم سا ان ای اه عط۳؟ ۶
)0 + ا(© لطايمها © ) ا
© Geeks! vent side
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موم
صفحه 21:
+ @xtrad Der Oort (Oow.)
© Oost of seeks
© Our, roo ات لو و مه عون تمس ree oed coe geet وا wore
wack net
«۰ 61۶/۵
© مار موی سنوی
< 0 جمد للخصص) رط تساه by, booke of a te)
« Weed @[b,/b,] seeks Por euk were puss
— except he Prd oe which does oot require Lorie
> Dordd میم of seeks!
Olt. /O) + ۶/۶ ا(© ما ق) -4(
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 10.60 ©Sbervehnts, Cork ced Cnakershe
صفحه 22:
00 سس
0 ا
+ bts Operate
© Geverd dPfereat ckerihws ty koplewet joie
© Destedtoop ion
© Ol cestedtoup pn
© Aadexed مام روط لصحي
© یی
© سیر
۲ وت و مس اما ان
۲ ار use the Policy Porvoo
اه ین و records oP meter: 10,000
© ی( of blocks oP توص 00
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. موم
صفحه 23:
واول جوع(
x
0
B Voom he betas or
Por ewk tek tard bey
Por pack tele م را do boos
teot par (1,1) pee B hey sutoPy the fora oxndtirs 0
تج db, old 161 he rem.
ead
ood
Br soled the outer مسق ond 5 the trey rekaion oF the jpic.
Qequires oo tedices ced cod be used ut coy bred oF jot .لحم
© Cxpewive swe tt exacwtees every pair oP tuples te the tivo rekon.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO.
صفحه 24:
Oeste oop \Iota (Ov)
he wort exe, Phere by exerts wrexoory aly to hkl ore Hock oP mack retin, bor
roma eat
ab, +b
عام سس اسان
we
vec
AP he miter relatos Pie سوت رو و هی thot ey fe kre rekon
9 2ن عند سيك 2 oveler
وج ی او و italy cot motte جا
۱
» SOOO * FOO + OO = C,000 400 beck ,اس
+ SOOO + ADO 2 5000 سس
© atk etree oe he enter rektins
» OOO * MOO + POO = 1,000 OO bhek سس xed POO verbs
AP sxvcler rekitiva (depretor) Pte rated ,نوج و the cost مهوت wil be GOO blook
امد
lock crviexHoue ckprthen (sent okde) by prePrrbke.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. woe ©Sbervehnts, Cork ced Cnakershe
صفحه 25:
+ Obok Ovsted Loup lot
BE Ocrtoct oP cestebop ota fa hick every block of ioc rekon ts poeed
ik every block oP ی reson.
Por pack block BoP reo bes
Por wack beck B, oP ade boots
Por cack hk | is @, bo bers
Bor pak tele | ta , do bets
Obeok B (1,,) 2utePy the joka raredirs
Pthey do, kd (he rem
ood
ood
vod
vod
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موم
صفحه 26:
Obok Ovverdvop بل )00(
19 حلييد ا * © + موخاصمن لجالا را + را + ا مجهي حم جد
© Book block ia he tour rektiog ote read core Por pack berks ther outer
rekon امس of pare Por euch tiple fr he outer neko:
© Qest we! b, + b, beck ixnePers + © secks.
11 eprevewet ty vested loop oad block oested loop زوا
© 415 خاصصاط vesieHoop, we D — 2 disk blocks os blochter, wait Por outer
rebtiogs, where (= wewory size to blocks; انا ما بو و
الا tocar ی ای میس
٠ عا + يعا + |[©-0) / | د سمه beck مج +
عد ال©-0) / 1و
© 18 عونا جتجاطاد ماصفجج a hey or trey rehaion, sippy tocar bop oo Pirst
او
© Gow tower bop Porword vad backward ohercately, to wohe حوب oP the
blocks rewatoicy it bubPer (wi LRO rephacewect)
© Ope لت oo ماس مج P avalible (cert okde)
4
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موم
صفحه 27:
دامل مومرلسوو() وله
19 خا مه با سار مت ما یا
© pia te og equtont or oxturd ic ood
ری با سوم po the erer rekiiva's parr مجاه
» Oem comming on fide et ۵ وروت «kt.
BE Por eek ape | she puter rekiion rn, oe he tare took up tikes ts tral sate
the ors ord wth tuple.
BH Worst cwe: bubPer hos spare Por ool) ove page of 7 oad, Por puck tuple in we
perfor os iden بح مب ونیا
9 با اه بسن b (tp th.) + eo
© Dhere op he ont of raversien kde ood Petehieg oll wrath, & ple Por oe
tuple oer
© 2 داوم جد مدو us ovat of a sine selevio oo stay he joka cokion.
۲ 1 ی ore avaluble va jot utributes oP bois road بع
we the retaica wih Pewer tuples os he outer retatiza.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. wor ©Sbervehnts, Cork ced Cnakershe
صفحه 28:
ون سل وال سس( Baccople oF +
B Ovwnte depres Miter, wil depositor es he vier rekiica.
۱ ما وه را 0 privey (ree fedex oo the بس صصخاصج جفجاطه ماج
hick ovotacs OO euttes ta eur terdex ade.
© Once nsiwer ke (0,000 tures, the heh oF he ree & P, od vce ore
موی بط اما طلست ما مت cea
© bret kor SOOO nips
Bl Opt of block cented boop ior
© OOOO + (OO = POAOO bork سوت + 0 * 00 = COO
seeks
) ee ROKR) Worst oe WEY
١ way be stqniPicadly less wi wore weer
Oost oP indexed ested ops pric.
© dO + SOOO * 9 < 06,100 اه له مامت با
© CO ovst thely te be less than thot Por block oested loops ivi
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موم
صفحه 29:
ول سوه مور)
(0 Gor bok rebiiows on ther ott otebute (Poot dead) sorted oa he pia oirbues).
©. Dene the sorted rektiows ty iota thew
(Uo ote7 ts kadar ty the were skp of the sortwerge cherie.
Octo dPPereore ts hoodkoy oP duplicate values to pte aide — every pair uit:
ای چا اس اه ام دم عنام موی
QOetated okprite ia book
4
Orsdrer Gyre Oncewpe -O* Crm, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موم
صفحه 30:
(000۰) «اعلسیپ و(
۲ Coa be wed vay Por equijpies oad coturd pice
۲ Guth beck ceeds ty be reed oaiy voce (assur ol tuples Por چاه لس مق بو
the ممصم دأ اذا دجاه اط
BD be cost oP were ps
بط + بط Dock rectors ليطا + ره seeks
© + the vost oP sorte P rektions are ی
۲ لوا were pte: IP coe retiiivg is sorted, ued the her hos o sevvodey @4rer
todex vo the اه و
@*-ree سا اه وت تا Der the sorted rebiion wit the و
Gon the result vo the oddresses oP the vested retatiog’s tuples: ©
tt physivdl address order ood werge wih previo ما موی ما Gown و
result, to replace addresses by the ortual tuples
۱ Gequectd scoo wore ef Pied tho rondo loobug
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 همومه
صفحه 31:
Welsloia
BO ppicdbe Por equioics ocd coturd joies.
© keek Powis kis used ty portion tuples تا سا اه
مه بط و ال و رل ,... ,( ,( ches to جه( )مال سح .لل
بصم صمحب مارم oF nocd seed اه
© ray ry or deowe portions of rips
» Gack te | 6 rie put i portion 1 where 1= hit, [lordPtre]).
On Np or dower portions of sheer
١ Bock يا جاص Eee pt in partion &, where 1 = h(i, [lordPire]).
Bl Qote: Ie book, جا ب dewted ww “I, 99 sewed we Dont
oe يس سوسس
سا0 لح 0 لا سواه 1 مهو (ب0 بسط 00
صفحه 32:
partitions partitions
ofr ofs
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. woe ©Sbervehnts, Cork ced Cnakershe
صفحه 33:
+ Arekxboa (Ova)
Br iples tar, ceed oly ty be او wih = hurler ta 5; Deed vt be
بود جا ساسج جلاننا لجسو تممه oher portioa, stare!
© جاصذك كه لحت طاو مد that soiePy the iota ooadics wll hove the sone
اه موز با بو اند
|۱۳ kat voke & hushed iy sexoe ude fhe rele hue Wy be ta er ae
ب م یو
سا0 لح 0 لا سواه 1 موم (ب0 بسط 00
صفحه 34:
ما2 لب اس +
۳ مایت of .ساد جد لجست جاح اعمس
مت با he rektion 9 usr hashing Puurtioa ki Okeo partici, a rekon, جم
block of coemory & reserved os the pupal buPPer Ror exch partis.
(Portioa rekrtey.
9. or rack
بط مسا( oexrory ond bukd oc kecoewory ما مه
تاه Dhis hook tex ما موس اس سول وچ
اس
(b) Read the tuples fa Proc the روا oc. (Por pack tiple |, boca
pack ماس pk fir Ain رورس ask krex, Output dor
یط و سم سیر
(Rektion = ts odled the جنلف
te ded the probe top.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. woe ©Sbervehnts, Cork ced Cnakershe
صفحه 35:
+ Nixebabia deprive (Oot)
5 Dhe uke ood he hook Riccio hy choseu sunk hot eh 9, shoudl Pi is
رس
© Dypicdly ois chosen oe [b JO] * Phere Pe “Pudge Pastor”, typical
won LO
© Dhe probe rekon portions 5, ceed معدب جا كا اب
۲ او بجوم موی P ounober of portions اوه ما یی ان
وی 0 سوم جر
۶ teal of particcin ou, wee D —( portions Por =
© Porter pantion he D =( partiocs weg. dPPerect hark Pucrtoa
© لماه عاسم سد دو( oar
© Rory required: e.y.,, revursive porticcieg ont ceeded Por rekdioas of
(G© or tess wi wewory size oF OOO, wit block size oP PKB.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 666 1 سا0 لح 0 لا سواه
صفحه 36:
AWaadiay oP OverPlbws
© Potticceg is suid to be skewed P sxe portions hove siqaPicadly wore tuples toa
sowe vers
۲ رب و و ما و مج رون ابا Rewoocer
له
© Dow و سای سوه تج نطو otter
۱
۲ اور نیون com be doce i bull pose
© Portion 986 Barker portioned win dPPeredt husk مخ
© اه اوه ام ب موه
اج وید وی امه و شاه باس تاو وله OverPow ©
phase
© Cy. potion buld rebativg tee wany portions, hea cowbice thea
© ok امین ها ات ات ات of امد
© albock option: use block vested loops jit vo overPwed portions ka
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 وهم
صفحه 37:
تا اس ی سس +
۲ 1 جاه بسه تلهم هه را ی kook jpin i>
9+ ۵ ۷ و block tenePers +
©) عاد (أيط/يط| + أيطا/بط|
18 111 و ی required:
#۰ ی جه اب required Por مت انا وج
ot یروط )( - 0
© best to chovse the swdler rekiiod us he bull وا
© Dord vost epiterate ts!
OG, + (يط)رريحا رطا - 0[ + &, +b, book وخ +
9) +], اس 1 - ( اما (ارط/
OP the هط رتاو و رو و و سا موه نو لا وی required
ماخ باج مسح حي طحب Cont ©
00 (ب0 بسط wor ©Sbervehnts, Cork ced Cnakershe
صفحه 38:
+ @xaople oP Ovet دحج اص »شان
یط ( جمسسصه
۲ نما میا wewory sie ty OO biochs
dOO wd &,, = FOO. = بط
depositions to be wed os badd نو Portion t tei Pie portions, euch oP size OO
blocks. “Nhs pontizaioy coo be door it zo po.
© Giotet), potiicg cusizwer toto Pive porticos,cuck oP size OO. ا عمجل مجه جا جا "!ا"
UME puss.
18 Vherefore tot ost, quorieg cost oP writer portal Pied blocks:
© QO + OO) = (SOO brook texehere +
9) ]6۵0/9[ + ]۵0/9(( = 990 اعد
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موم
صفحه 39:
«املحجاعهراا” لجارملا"
© OsePd wheo wewory sired wre rehaively forge, ord the bud rout ts bower hort
wewory.
۲ Dea Pecture of hybrid hook otc
(Keep te Pret partion oF the bud retaiog to wecory.
© Cy. Oth wewmy sie oP OS blocks, مه لوط be portioned tia Pave porttives,
wack of ste OO blocks.
© Oven oP خی
١ Dhe First portion vomupies OO backs oP ی
"0 block is used Por iazut, oad ( block eurk Por bubPeriag the viher
سس
§onstewer's sivtet) pontiioded hic Five porticus اس of size OD
© the Pret 5 weed right away Por probing, iesteud of betay write ut
© Cost oF O(60 + 980) + CO +00 = (900 bok trocePers Por
hybrid bask jot, tosteud oP GOO wil plata hask-jpr.
Hybrid kosh-pis wost usePul PD >>
le,
1
موص
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO.
صفحه 40:
+ 252323038
Bok تم سر د جلاب
Mr حاون نووسي
© Ciher we عه ,تا ای راما لس
© Onwopute he remit oP owe of the skoper jp ro Dd
” Bod result ooeprises those tuples رای ما اف وه ما
the recat coerce:
One 8 8 gh * 0)
Blot wih a divert coaction
م
00" 990
بت توا ای ناما موی بت ولا
oP he records roe رفك os the رون و
eo درو seer
یی لا لاصو ©) نالع ©)
s
:
x
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. wero ©Sbervehnts, Cork ced Cnakershe
صفحه 41:
+ Oter سم
۲ و را من مووي بجا رجت وا سای sore.
© On sort وه لب سود duced to pack cher, od ol but oc set of
cherie pet he carat,
© Oprrizaicd: duptodtes van be deleted durex) rus yeuerdiva os well os ot
بوم امد لت و مات رطس
© ALeehin جروت نت مارا - واه سا iio the socve bucket.
© تم
وا نطو
وه دولناد۳ ۶
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موه
صفحه 42:
+ 0 م0 عد : Oqyrquiva
0 ود و و و و او ehrmi.
اه مسجت سوه سا نا او رما وا لا موه باه Gorter or ©
.سحب حاصب مج لجتامجت صخا جمدت جمصاصصي ذا صفيصصييعه با مل لو
امه مس معط رسد وبحي عمد ججا جا جصارن؟ او سین ۶
جعسامب وروی اور وه نو وه لصو
* Cor cow, wor, ای ری با تمه و vo tuples Poucd sv
Por ta the yup.
~ Obes cow biciey portal aggregate Por covet, add up the وی
٠ Por wy, keep seen ond cant, ood dude suey by count of the cod
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موی
صفحه 43:
+ ۳ بر ¢ Ost Opercioar
Bl Get pperctoe (U, 1 ened —): can ether wor var oP rer yep Per soviet,
vrarknd oP keok-p.
BE تا وم مهن سا رن
١١ Pantica buts retaiccs vetey he soo hook Branton
Proce wack portion fe Powe.
6. د يجو( WPPerect hoki Raccaza, bak! oa reremory husk tender or
Proveve 9, <0 Poke
© rus
Odd hee ره و he hooks خا سلج they are of crear)
با للجم بط Apes ta fr hk tke to he reo.
ros
۱ ple ta 9:0 the reel ey are cbeeund) there father kets tock
Por euch tuple i 9, Pty there ta he hook rice, delete a Proce the با
inks.
Ot ead oP 9, acd recwatoten fue tn her hash taker ty ther re.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موی
صفحه 44:
+ Ober Operdixe 2
BO cter fora cor be اه اس
۶ © jos Poloued by ocklion of موی الوا Kies.
© مام صا ور كالح برط keris.
۲ کج ور مت م۵(
۱ tuples ore those tr —T1,(r ل <4
۶ USD eter eee Pers ery ete
Broce ی بت و فا ony tuple ies, mulput | porkded wks cubs.
© Right outer pra gad Pull vuerspic coc be computed sila.
© Dod jiey hook و صا مام =I
OAR he probe rekon, cpu coxmamachen rips porkied wits لج
OP re bull rekon, uheo probes heey irak oP hick
rte ندج د خم لمج ا( وج نمی
sexewricked riuples packted uly cnr
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. wee ©Sbervehnts, Cork ced Cnakershe
صفحه 45:
ار +
© Gp Pot we have see شوه امطلی جيك
© lersaives Por و باه cutee expressing tree
۶ وی لول resus of on expreseiza whose Rus are rektiocee
or are dent) vxuted, utertdie (story) toa deh. Repeat,
operctivar eve cer cnt operon te bet مسجو مو لجووج رس سوير يسوم
جوم
18 We sty cbove diercaives لماع سس دا
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 موم
صفحه 46:
تن +
۲ ره را وه موه هن ره تمه لبلب( of the
fawestlevel. موه بو( results جعصقماه روما ها ای
اوه رطف ارو صا
وه اجه و ,بنطاصطا متا رو 18
0 accoun
ا be Lialepeesnf ACCOU! ce ae te
Prppviogs oa Cusine nnn,
1
0
aN
| alance < 2500
صفحه 47:
Qcterintzciva (Ovd.)
۲ ماه لطاب( i chivas uppicdble
Cost oF varie resale to db god ready thew buck coo be quite hich:
© Our cost Porwukts Por operaives iquore cost of wuritay results to dish, 57
* Overdl cost = Guep oP costs of موه امه +
ost oF لح رت results to cet
BH Double bubPeriog! use tue vulgut buPPers Por euch operaiva, wheo coe is Pull
رید to cists ube the otter ts options Pied
© lows overlap oP ول له موی لت رن الط exertion fee
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. wer ©Sbervehnts, Cork ced Cnakershe
صفحه 48:
Pipelsiay
© Opeheed euckeiog 2 evoke severd opercivas skoubouevusl, passtay he results oP
oa ty the cen. موه عون
B 0.x, i previaw expresin tree, dou! store rem of
موی سیر (
۱ tuples dreviy to he pts... Grey, doo't store resul oP joi, pass
tuples direviy to proevios.
© Ouch cheuer thos wateridizdiod! a7 ceed ty store a tewporary rehotivg to deh.
اس owt chivas be possible — ex, sort, وی دادم
© Cor pipelctay to be ef Pecive, use evolvaivg doris thot yeceruie culgul tuples eve
ve tuples ore reveived Por iapuis to the operatic.
© pehes coo be exerted tote weve: dewoad dived ued produzer even
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO.
صفحه 49:
+ Prpetcicy (Ova)
۳ 1 تم ted or kay eckson
© systeww repedtedyy requests vent tuple Prow top level operctios
© Cock operciog requests ued tuple Prow chidres ppercioes us required, ist
جد جلا ددج صا عولمج tule
© Aa betwern cls, ppercica kes وسنصكا 3 مد "اماك " جماماميه صا bol اوه مج صا
© (a prodwersdted or exer pipet
© Openers produce tuples eagerly ond poss thew up ty ther poreuis:
* OP Re, watctatced betwero operdors, chi puts tuples to buPPer, جم
rewoves tuples Prow buPPer
"OP buPPer ts Pal, child uvatte til here te space to the buPPer, ood theo
وس wore tuples
god mas process: له pperctioes thot hove spore tt pupal لاه مسق و
swore fag tuples
Bl of pipet
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. wee ©Sbervehnts, Cork ced Cnakershe
صفحه 50:
+ Prpetcicy (Ova)
© ope wedtatioa of deworddeved pipetsiay
© Cock operation is toplewedied os on teruier tepleweitery the Polo tcry
رن
» سب
~ @.y. Pe scorn: ioitalze Pile sot
> state! potater to beqcrciccy oP Pie
- او و نم و
« شاه اوه که مسا وا ور تاد
a)
- © ox. Por Fle score: Output ced tuple, cod odvoaze ood store Pile:
potter
~ Cox, Por werye pit اه او مت ی طلست سا i
went cult tuple is Pound. Gave potters us tieruior state.
» chose)
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. سا0 لح 0 لا سواه 1 همومه
صفحه 51:
+ سب ملس Pyetctag
۲ ول وت ore 0 ob ty cup results eves op hey yet fap tuples
© Bx. were pin, or bark joa
و reply write ty desk oul ec read barks
۴ پم تا to cpoerde (ot bust swe) ress oa he Ply, a fap hips ore
امسر
© Cox hybrid hook pc sever cies ovina ples eve oe probe اوه مایت he
ماسم تدمج يمسر (yuri (D) are rend ts
© Pipetced pic teohaique: Wybrid hock jot, wodPied to buPPer portion D tuples of
ولو روت مشاه سا thew us they beoowe ovciible, ord culzut
resus oP coy watches betwerd portion (D tuples
> Okew a caw ry rk Pound, wruch wth enti يد Apes, oul
wrtohes, wend و سوت
> Gyrowetridy Por 9g) hplew
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. 16.60 ©Sbervehnts, Cork ced Cnakershe
صفحه 52:
Gad oP Okaper
صفحه 53:
11 «۵
9 balance < 2500; use index
account
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. موم
صفحه 54:
عدادل مبعام جو 2)
13 هما تسد صل rektiows! ber لصفو mete Mer
11 Oreew 1. One ue لاصيا ١ لومجاطد wer result io cocopute: ben
(cepesior bo)
۲ جب ,اوكا ودبتل ماج رصیق thea iota the results
صموسحه
© Groew 9. Perform the parr oP oe of are. Build ond totes oat bro Por
بخاص عونا -صصصطصت جه لمه جوتأ صم مما
© or cack tuple fa deposi, look up he correepoerden tuples tt puter
wand he corresponntey tuples ta bro.
© Gack tuple oP deposits exaviced exactly voce.
© Grrotew 9 cowbiees te operdivas itie vor spectohpurpose ها موه
مسا راو لا ماه وم pice oF tue rekatiocs.
Ocsdrer Gyre Oncewpe -O* Crim, Ooi ?, OOOO. woe ©Sbervehnts, Cork ced Cnakershe
Chapter 13: Query Processing
Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
Chapter 13: Query Processing
Overview
Measures of Query Cost
Selection Operation
Sorting
Join Operation
Other Operations
Evaluation of Expressions
Database System Concepts - 5th Edition, Aug 27, 2005.
13.2
©Silberschatz, Korth and Sudarshan
Basic Steps in Query Processing
1. Parsing and translation
2. Optimization
3. Evaluation
Database System Concepts - 5th Edition, Aug 27, 2005.
13.3
©Silberschatz, Korth and Sudarshan
Basic Steps in Query Processing (Cont.)
Parsing and translation
translate the query into its internal form. This is then translated into relational
algebra.
Parser checks syntax, verifies relations
Evaluation
The query-execution engine takes a query-evaluation plan, executes that plan,
and returns the answers to the query.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.4
©Silberschatz, Korth and Sudarshan
Basic Steps in Query Processing : Optimization
A relational algebra expression may have many equivalent expressions
E.g., balance2500(balance(account)) is equivalent to
balance(balance2500(account))
Each relational algebra operation can be evaluated using one of several different
algorithms
Correspondingly, a relational-algebra expression can be evaluated in many ways.
Annotated expression specifying detailed evaluation strategy is called an evaluation-plan.
E.g., can use an index on balance to find accounts with balance < 2500,
or can perform complete relation scan and discard accounts with balance
2500
Database System Concepts - 5th Edition, Aug 27, 2005.
13.5
©Silberschatz, Korth and Sudarshan
Basic Steps: Optimization (Cont.)
Query Optimization: Amongst all equivalent evaluation plans choose the one with
lowest cost.
Cost is estimated using statistical information from the
database catalog
e.g. number of tuples in each relation, size of tuples, etc.
In this chapter we study
How to measure query costs
Algorithms for evaluating relational algebra operations
How to combine algorithms for individual operations in order to evaluate a
complete expression
In Chapter 14
We study how to optimize queries, that is, how to find an evaluation plan with
lowest estimated cost
Database System Concepts - 5th Edition, Aug 27, 2005.
13.6
©Silberschatz, Korth and Sudarshan
Measures of Query Cost
Cost is generally measured as total elapsed time for answering query
Many factors contribute to time cost
disk accesses, CPU, or even network communication
Typically disk access is the predominant cost, and is also relatively easy
to estimate. Measured by taking into account
Number of seeks
* average-seek-cost
Number of blocks read
* average-block-read-cost
Number of blocks written * average-block-write-cost
Cost to write a block is greater than cost to read a block
– data is read back after being written to ensure that the write
was successful
Database System Concepts - 5th Edition, Aug 27, 2005.
13.7
©Silberschatz, Korth and Sudarshan
Measures of Query Cost (Cont.)
For simplicity we just use the number of block transfers from disk and the number of
seeks as the cost measures
tT – time to transfer one block
tS – time for one seek
Cost for b block transfers plus S seeks
b * tT + S * tS
We ignore CPU costs for simplicity
Real systems do take CPU cost into account
We do not include cost to writing output to disk in our cost formulae
Several algorithms can reduce disk IO by using extra buffer space
Amount of real memory available to buffer depends on other concurrent queries
and OS processes, known only during execution
We often use worst case estimates, assuming only the minimum amount of
memory needed for the operation is available
Required data may be buffer resident already, avoiding disk I/O
But hard to take into account for cost estimation
Database System Concepts - 5th Edition, Aug 27, 2005.
13.8
©Silberschatz, Korth and Sudarshan
Selection Operation
File scan – search algorithms that locate and retrieve records that fulfill a
selection condition.
Algorithm A1 (linear search). Scan each file block and test all records to see
whether they satisfy the selection condition.
Cost estimate = br block transfers + 1 seek
If selection is on a key attribute, can stop on finding record
br denotes number of blocks containing records from relation r
cost = (br /2) block transfers + 1 seek
Linear search can be applied regardless of
selection condition or
ordering of records in the file, or
availability of indices
Database System Concepts - 5th Edition, Aug 27, 2005.
13.9
©Silberschatz, Korth and Sudarshan
Selection Operation (Cont.)
A2 (binary search). Applicable if selection is an equality comparison on the
attribute on which file is ordered.
Assume that the blocks of a relation are stored contiguously
Cost estimate (number of disk blocks to be scanned):
cost of locating the first tuple by a binary search on the blocks
log2(br) * (tT + tS)
If there are multiple records satisfying selection
– Add transfer cost of the number of blocks containing records
that satisfy selection condition
– Will see how to estimate this cost in Chapter 14
Database System Concepts - 5th Edition, Aug 27, 2005.
13.10
©Silberschatz, Korth and Sudarshan
Selections Using Indices
Index scan – search algorithms that use an index
selection condition must be on search-key of index.
A3 (primary index on candidate key, equality). Retrieve a single record that satisfies
the corresponding equality condition
Cost = (hi + 1) * (tT + tS)
A4 (primary index on nonkey, equality) Retrieve multiple records.
Records will be on consecutive blocks
Let b = number of blocks containing matching records
Cost = hi * (tT + tS) + tS + tT * b
A5 (equality on search-key of secondary index).
Retrieve a single record if the search-key is a candidate key
Cost = (hi + 1) * (tT + tS)
Retrieve multiple records if search-key is not a candidate key
each of n matching records may be on a different block
Cost = (hi + n) * (tT + tS)
– Can be very expensive!
Database System Concepts - 5th Edition, Aug 27, 2005.
13.11
©Silberschatz, Korth and Sudarshan
Selections Involving Comparisons
Can implement selections of the form AV (r) or A V(r) by using
a linear file scan or binary search,
or by using indices in the following ways:
A6 (primary index, comparison). (Relation is sorted on A)
For A V(r) use index to find first tuple v and scan relation sequentially
from there
For AV (r) just scan relation sequentially till first tuple > v; do not use index
A7 (secondary index, comparison).
For A V(r) use index to find first index entry v and scan index
sequentially from there, to find pointers to records.
For AV (r) just scan leaf pages of index finding pointers to records, till first
entry > v
In either case, retrieve records that are pointed to
– requires an I/O for each record
– Linear file scan may be cheaper
Database System Concepts - 5th Edition, Aug 27, 2005.
13.12
©Silberschatz, Korth and Sudarshan
Implementation of Complex Selections
Conjunction: 1 2. . . n(r)
A8 (conjunctive selection using one index).
Test other conditions on tuple after fetching it into memory buffer.
A9 (conjunctive selection using multiple-key index ).
Select a combination of i and algorithms A1 through A7 that results in the
least cost for i (r).
Use appropriate composite (multiple-key) index if available.
A10 (conjunctive selection by intersection of identifiers).
Requires indices with record pointers.
Use corresponding index for each condition, and take intersection of all the
obtained sets of record pointers.
Then fetch records from file
If some conditions do not have appropriate indices, apply test in memory.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.13
©Silberschatz, Korth and Sudarshan
Algorithms for Complex Selections
Disjunction:1 2 . . . n (r).
A11 (disjunctive selection by union of identifiers).
Applicable if all conditions have available indices.
Otherwise use linear scan.
Use corresponding index for each condition, and take union of all the obtained sets
of record pointers.
Then fetch records from file
Negation: (r)
Use linear scan on file
If very few records satisfy , and an index is applicable to
Find satisfying records using index and fetch from file
Database System Concepts - 5th Edition, Aug 27, 2005.
13.14
©Silberschatz, Korth and Sudarshan
Sorting
We may build an index on the relation, and then use the index to read the relation in
sorted order. May lead to one disk block access for each tuple.
For relations that fit in memory, techniques like quicksort can be used. For
relations that don’t fit in memory, external
sort-merge is a good choice.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.15
©Silberschatz, Korth and Sudarshan
External Sort-Merge
Let M denote memory size (in pages).
1. Create sorted runs. Let i be 0 initially.
Repeatedly do the following till the end of the relation:
(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks
(c) Write sorted data to run Ri; increment i.
Let the final value of i be N
2. Merge the runs (next slide)…..
Database System Concepts - 5th Edition, Aug 27, 2005.
13.16
©Silberschatz, Korth and Sudarshan
External Sort-Merge (Cont.)
2. Merge the runs (N-way merge). We assume (for now) that N < M.
1.
Use N blocks of memory to buffer input runs, and 1 block to
buffer output. Read the first block of each run into its buffer page
2.
repeat
3.
1.
Select the first record (in sort order) among all buffer pages
2.
Write the record to the output buffer. If the output buffer is full
write it to disk.
3.
Delete the record from its input buffer page.
If the buffer page becomes empty then
read the next block (if any) of the run into the buffer.
until all input buffer pages are empty:
Database System Concepts - 5th Edition, Aug 27, 2005.
13.17
©Silberschatz, Korth and Sudarshan
External Sort-Merge (Cont.)
If N M, several merge passes are required.
In each pass, contiguous groups of M - 1 runs are merged.
A pass reduces the number of runs by a factor of M -1, and
creates runs longer by the same factor.
E.g. If M=11, and there are 90 runs, one pass reduces the
number of runs to 9, each 10 times the size of the initial runs
Repeated passes are performed till all runs have been merged into
one.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.18
©Silberschatz, Korth and Sudarshan
Example: External Sorting Using Sort-Merge
Database System Concepts - 5th Edition, Aug 27, 2005.
13.19
©Silberschatz, Korth and Sudarshan
External Merge Sort (Cont.)
Cost analysis:
Total number of merge passes required: logM–1(br/M).
Block transfers for initial run creation as well as in each pass is 2br
for final pass, we don’t count write cost
– we ignore final write cost for all operations since the output of
an operation may be sent to the parent operation without being
written to disk
Thus total number of block transfers for external sorting:
br ( 2 logM–1(br / M) + 1)
Seeks: next slide
Database System Concepts - 5th Edition, Aug 27, 2005.
13.20
©Silberschatz, Korth and Sudarshan
External Merge Sort (Cont.)
Cost of seeks
During run generation: one seek to read each run and one seek to write
each run
2 br / M
During the merge phase
Buffer size: bb (read/write bb blocks at a time)
Need 2 br / bb seeks for each merge pass
– except the final one which does not require a write
Total number of seeks:
2 br / M + br / bb (2 logM–1(br / M) -1)
Database System Concepts - 5th Edition, Aug 27, 2005.
13.21
©Silberschatz, Korth and Sudarshan
Join Operation
Several different algorithms to implement joins
Nested-loop join
Block nested-loop join
Indexed nested-loop join
Merge-join
Hash-join
Choice based on cost estimate
Examples use the following information
Number of records of customer: 10,000
Number of blocks of customer:
Database System Concepts - 5th Edition, Aug 27, 2005.
13.22
400
depositor: 5000
depositor: 100
©Silberschatz, Korth and Sudarshan
Nested-Loop Join
To compute the theta join
r
for each tuple tr in r do begin
s
for each tuple ts in s do begin
test pair (tr,ts) to see if they satisfy the join condition
if they do, add tr • ts to the result.
end
end
r is called the outer relation and s the inner relation of the join.
Requires no indices and can be used with any kind of join condition.
Expensive since it examines every pair of tuples in the two relations.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.23
©Silberschatz, Korth and Sudarshan
Nested-Loop Join (Cont.)
In the worst case, if there is enough memory only to hold one block of each relation, the
estimated cost is
n r bs + b r
block transfers, plus
n r + br
seeks
If the smaller relation fits entirely in memory, use that as the inner relation.
Reduces cost to br + bs block transfers and 2 seeks
Assuming worst case memory availability cost estimate is
with depositor as outer relation:
5000 400 + 100 = 2,000,100 block transfers,
5000 + 100 = 5100 seeks
with customer as the outer relation
10000 100 + 400 = 1,000,400 block transfers and 10,400 seeks
If smaller relation (depositor) fits entirely in memory, the cost estimate will be 500 block
transfers.
Block nested-loops algorithm (next slide) is preferable.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.24
©Silberschatz, Korth and Sudarshan
Block Nested-Loop Join
Variant of nested-loop join in which every block of inner relation is paired
with every block of outer relation.
for each block Br of r do begin
for each block Bs of s do begin
for each tuple tr in Br do begin
for each tuple ts in Bs do begin
Check if (tr,ts) satisfy the join condition
if they do, add tr • ts to the result.
end
end
end
end
Database System Concepts - 5th Edition, Aug 27, 2005.
13.25
©Silberschatz, Korth and Sudarshan
Block Nested-Loop Join (Cont.)
Worst case estimate: br bs + br block transfers + 2 * br seeks
Each block in the inner relation s is read once for each block in the outer
relation (instead of once for each tuple in the outer relation
Best case: br + bs block transfers + 2 seeks.
Improvements to nested loop and block nested loop algorithms:
In block nested-loop, use M — 2 disk blocks as blocking unit for outer
relations, where M = memory size in blocks; use remaining two blocks to
buffer inner relation and output
Cost = br / (M-2) bs + br block transfers +
2 br / (M-2) seeks
If equi-join attribute forms a key or inner relation, stop inner loop on first
match
Scan inner loop forward and backward alternately, to make use of the
blocks remaining in buffer (with LRU replacement)
Use index on inner relation if available (next slide)
Database System Concepts - 5th Edition, Aug 27, 2005.
13.26
©Silberschatz, Korth and Sudarshan
Indexed Nested-Loop Join
Index lookups can replace file scans if
join is an equi-join or natural join and
an index is available on the inner relation’s join attribute
Can construct an index just to compute a join.
For each tuple tr in the outer relation r, use the index to look up tuples in s that satisfy
the join condition with tuple tr.
Worst case: buffer has space for only one page of r, and, for each tuple in r, we
perform an index lookup on s.
Cost of the join: br (tT + tS) + nr c
Where c is the cost of traversing index and fetching all matching s tuples for one
tuple or r
c can be estimated as cost of a single selection on s using the join condition.
If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.27
©Silberschatz, Korth and Sudarshan
Example of Nested-Loop Join Costs
Compute depositor
Let customer have a primary B+-tree index on the join attribute customer-name,
which contains 20 entries in each index node.
Since customer has 10,000 tuples, the height of the tree is 4, and one more
access is needed to find the actual data
depositor has 5000 tuples
Cost of block nested loops join
400*100 + 100 = 40,100 block transfers + 2 * 100 = 200
seeks
customer, with depositor as the outer relation.
assuming worst case memory
may be significantly less with more memory
Cost of indexed nested loops join
100 + 5000 * 5 = 25,100 block transfers and seeks.
CPU cost likely to be less than that for block nested loops join
Database System Concepts - 5th Edition, Aug 27, 2005.
13.28
©Silberschatz, Korth and Sudarshan
Merge-Join
1.
Sort both relations on their join attribute (if not already sorted on the join attributes).
2. Merge the sorted relations to join them
1.
Join step is similar to the merge stage of the sort-merge algorithm.
2.
Main difference is handling of duplicate values in join attribute — every pair with
same value on join attribute must be matched
3.
Detailed algorithm in book
Database System Concepts - 5th Edition, Aug 27, 2005.
13.29
©Silberschatz, Korth and Sudarshan
Merge-Join (Cont.)
Can be used only for equi-joins and natural joins
Each block needs to be read only once (assuming all tuples for any given value of
the join attributes fit in memory
Thus the cost of merge join is:
br + bs block transfers + br / bb + bs / bb seeks
+ the cost of sorting if relations are unsorted.
hybrid merge-join: If one relation is sorted, and the other has a secondary B +-tree
index on the join attribute
Merge the sorted relation with the leaf entries of the B+-tree .
Sort the result on the addresses of the unsorted relation’s tuples
Scan the unsorted relation in physical address order and merge with previous
result, to replace addresses by the actual tuples
Sequential scan more efficient than random lookup
Database System Concepts - 5th Edition, Aug 27, 2005.
13.30
©Silberschatz, Korth and Sudarshan
Hash-Join
Applicable for equi-joins and natural joins.
A hash function h is used to partition tuples of both relations
h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the common
attributes of r and s used in the natural join.
r0, r1, . . ., rn denote partitions of r tuples
r0,, r1. . ., rn denotes partitions of s tuples
Each tuple tr r is put in partition ri where i = h(tr [JoinAttrs]).
Each tuple ts s is put in partition si, where i = h(ts [JoinAttrs]).
Note: In book, ri is denoted as Hri, si is denoted as Hsi and
n is denoted as nh.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.31
©Silberschatz, Korth and Sudarshan
Hash-Join (Cont.)
Database System Concepts - 5th Edition, Aug 27, 2005.
13.32
©Silberschatz, Korth and Sudarshan
Hash-Join (Cont.)
r tuples in ri need only to be compared with s tuples in si Need not be
compared with s tuples in any other partition, since:
an r tuple and an s tuple that satisfy the join condition will have the same
value for the join attributes.
If that value is hashed to some value i, the r tuple has to be in ri and the
s tuple in si.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.33
©Silberschatz, Korth and Sudarshan
Hash-Join Algorithm
The hash-join of r and s is computed as follows.
1. Partition the relation s using hashing function h. When partitioning a relation, one
block of memory is reserved as the output buffer for each partition.
2. Partition r similarly.
3. For each i:
(a) Load si into memory and build an in-memory hash index on it using the join
attribute. This hash index uses a different hash function than the earlier
one h.
(b) Read the tuples in ri from the disk one by one. For each tuple tr locate
each matching tuple ts in si using the in-memory hash index. Output the
concatenation of their attributes.
Relation s is called the build input and
r is called the probe input.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.34
©Silberschatz, Korth and Sudarshan
Hash-Join algorithm (Cont.)
The value n and the hash function h is chosen such that each si should fit in
memory.
Typically n is chosen as bs/M * f where f is a “fudge factor”, typically
around 1.2
The probe relation partitions si need not fit in memory
Recursive partitioning required if number of partitions n is greater than number
of pages M of memory.
instead of partitioning n ways, use M – 1 partitions for s
Further partition the M – 1 partitions using a different hash function
Use same partitioning method on r
Rarely required: e.g., recursive partitioning not needed for relations of
1GB or less with memory size of 2MB, with block size of 4KB.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.35
©Silberschatz, Korth and Sudarshan
Handling of Overflows
Partitioning is said to be skewed if some partitions have significantly more tuples than
some others
Hash-table overflow occurs in partition si if si does not fit in memory. Reasons
could be
Many tuples in s with same value for join attributes
Bad hash function
Overflow resolution can be done in build phase
Partition si is further partitioned using different hash function.
Partition ri must be similarly partitioned.
Overflow avoidance performs partitioning carefully to avoid overflows during build
phase
E.g. partition build relation into many partitions, then combine them
Both approaches fail with large numbers of duplicates
Fallback option: use block nested loops join on overflowed partitions
Database System Concepts - 5th Edition, Aug 27, 2005.
13.36
©Silberschatz, Korth and Sudarshan
Cost of Hash-Join
If recursive partitioning is not required: cost of hash join is
3(br + bs) +4 nh block transfers +
2( br / bb + bs / bb) seeks
If recursive partitioning required:
number of passes required for partitioning build relation
s is logM–1(bs) – 1
best to choose the smaller relation as the build relation.
Total cost estimate is:
2(br + bs logM–1(bs) – 1 + br + bs block transfers +
2(br / bb + bs / bb) logM–1(bs) – 1 seeks
If the entire build input can be kept in main memory no partitioning is required
Cost estimate goes down to br + bs.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.37
©Silberschatz, Korth and Sudarshan
Example of Cost of Hash-Join
customer
depositor
Assume that memory size is 20 blocks
bdepositor= 100 and bcustomer = 400.
depositor is to be used as build input. Partition it into five partitions, each of size 20
blocks. This partitioning can be done in one pass.
Similarly, partition customer into five partitions,each of size 80. This is also done in
one pass.
Therefore total cost, ignoring cost of writing partially filled blocks:
3(100 + 400) = 1500 block transfers +
2( 100/3 + 400/3) = 336 seeks
Database System Concepts - 5th Edition, Aug 27, 2005.
13.38
©Silberschatz, Korth and Sudarshan
Hybrid Hash–Join
Useful when memory sized are relatively large, and the build input is bigger than
memory.
Main feature of hybrid hash join:
Keep the first partition of the build relation in memory.
E.g. With memory size of 25 blocks, depositor can be partitioned into five partitions,
each of size 20 blocks.
Division of memory:
The first partition occupies 20 blocks of memory
1 block is used for input, and 1 block each for buffering the other 4
partitions.
customer is similarly partitioned into five partitions each of size 80
the first is used right away for probing, instead of being written out
Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for
hybrid hash join, instead of 1500 with plain hash-join.
Hybrid hash-join most useful if M >>
bs
Database System Concepts - 5th Edition, Aug 27, 2005.
13.39
©Silberschatz, Korth and Sudarshan
Complex Joins
Join with a conjunctive condition:
r
1 2... n
s
Either use nested loops/block nested loops, or
Compute the result of one of the simpler joins r
i
s
final result comprises those tuples in the intermediate result that satisfy
the remaining conditions
1 . . . i –1 i +1 . . . n
Join with a disjunctive condition
r
1 2 ... n
s
Either use nested loops/block nested loops, or
Compute as the union of the records in individual joins r
(r
1
Database System Concepts - 5th Edition, Aug 27, 2005.
s ) (r
2
s) . . . (r
13.40
n
i s:
s)
©Silberschatz, Korth and Sudarshan
Other Operations
Duplicate elimination can be implemented via hashing or sorting.
On sorting duplicates will come adjacent to each other, and all but one set of
duplicates can be deleted.
Optimization: duplicates can be deleted during run generation as well as at
intermediate merge steps in external sort-merge.
Hashing is similar – duplicates will come into the same bucket.
Projection:
perform projection on each tuple
followed by duplicate elimination.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.41
©Silberschatz, Korth and Sudarshan
Other Operations : Aggregation
Aggregation can be implemented in a manner similar to duplicate elimination.
Sorting or hashing can be used to bring tuples in the same group together,
and then the aggregate functions can be applied on each group.
Optimization: combine tuples in the same group during run generation and
intermediate merges, by computing partial aggregate values
For count, min, max, sum: keep aggregate values on tuples found so
far in the group.
– When combining partial aggregate for count, add up the aggregates
For avg, keep sum and count, and divide sum by count at the end
Database System Concepts - 5th Edition, Aug 27, 2005.
13.42
©Silberschatz, Korth and Sudarshan
Other Operations : Set Operations
Set operations (, and ): can either use variant of merge-join after sorting, or
variant of hash-join.
E.g., Set operations using hashing:
1. Partition both relations using the same hash function
2. Process each partition i as follows.
1. Using a different hashing function, build an in-memory hash index on ri.
2.
Process si as follows
r s:
1. Add tuples in si to the hash index if they are not already in it.
At end of si add the tuples in the hash index to the result.
r s:
2.
output tuples in si to the result if they are already there in the hash index
r – s:
1. for each tuple in si, if it is there in the hash index, delete it from the
index.
2.
At end of si add remaining tuples in the hash index to the result.
1.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.43
©Silberschatz, Korth and Sudarshan
Other Operations : Outer Join
Outer join can be computed either as
A join followed by addition of null-padded non-participating tuples.
by modifying the join algorithms.
Modifying merge join to compute r
s
In r
s, non participating tuples are those in r – R(r
Modify merge-join to compute r
s: During merging, for every tuple tr
from r that do not match any tuple in s, output tr padded with nulls.
Right outer-join and full outer-join can be computed similarly.
Modifying hash join to compute r
s)
s
If r is probe relation, output non-matching r tuples padded with nulls
If r is build relation, when probing keep track of which
r tuples matched s tuples. At end of si output
non-matched r tuples padded with nulls
Database System Concepts - 5th Edition, Aug 27, 2005.
13.44
©Silberschatz, Korth and Sudarshan
Evaluation of Expressions
So far: we have seen algorithms for individual operations
Alternatives for evaluating an entire expression tree
Materialization: generate results of an expression whose inputs are relations
or are already computed, materialize (store) it on disk. Repeat.
Pipelining: pass on tuples to parent operations even as an operation is being
executed
We study above alternatives in more detail
Database System Concepts - 5th Edition, Aug 27, 2005.
13.45
©Silberschatz, Korth and Sudarshan
Materialization
Materialized evaluation: evaluate one operation at a time, starting at the
lowest-level. Use intermediate results materialized into temporary relations
to evaluate next-level operations.
E.g., in figure below, compute and store
balance2500(account
)
then compute the store its join with customer, and finally compute the
projections on customer-name.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.46
©Silberschatz, Korth and Sudarshan
Materialization (Cont.)
Materialized evaluation is always applicable
Cost of writing results to disk and reading them back can be quite high
Our cost formulas for operations ignore cost of writing results to disk, so
Overall cost = Sum of costs of individual operations +
cost of writing intermediate results to disk
Double buffering: use two output buffers for each operation, when one is full
write it to disk while the other is getting filled
Allows overlap of disk writes with computation and reduces execution time
Database System Concepts - 5th Edition, Aug 27, 2005.
13.47
©Silberschatz, Korth and Sudarshan
Pipelining
Pipelined evaluation : evaluate several operations simultaneously, passing the results of
one operation on to the next.
E.g., in previous expression tree, don’t store result of
balance
(account
2500
)
instead, pass tuples directly to the join.. Similarly, don’t store result of join, pass
tuples directly to projection.
Much cheaper than materialization: no need to store a temporary relation to disk.
Pipelining may not always be possible – e.g., sort, hash-join.
For pipelining to be effective, use evaluation algorithms that generate output tuples even
as tuples are received for inputs to the operation.
Pipelines can be executed in two ways: demand driven and producer driven
Database System Concepts - 5th Edition, Aug 27, 2005.
13.48
©Silberschatz, Korth and Sudarshan
Pipelining (Cont.)
In demand driven or lazy evaluation
system repeatedly requests next tuple from top level operation
Each operation requests next tuple from children operations as required, in
order to output its next tuple
In between calls, operation has to maintain “state” so it knows what to return next
In producer-driven or eager pipelining
Operators produce tuples eagerly and pass them up to their parents
Buffer maintained between operators, child puts tuples in buffer, parent
removes tuples from buffer
if buffer is full, child waits till there is space in the buffer, and then
generates more tuples
System schedules operations that have space in output buffer and can process
more input tuples
Alternative name: pull and push models of pipelining
Database System Concepts - 5th Edition, Aug 27, 2005.
13.49
©Silberschatz, Korth and Sudarshan
Pipelining (Cont.)
Implementation of demand-driven pipelining
Each operation is implemented as an iterator implementing the following
operations
open()
– E.g. file scan: initialize file scan
»
state: pointer to beginning of file
– E.g.merge join: sort relations;
»
state: pointers to beginning of sorted relations
next()
– E.g. for file scan: Output next tuple, and advance and store file
pointer
– E.g. for merge join: continue with merge from earlier state till
next output tuple is found. Save pointers as iterator state.
close()
Database System Concepts - 5th Edition, Aug 27, 2005.
13.50
©Silberschatz, Korth and Sudarshan
Evaluation Algorithms for Pipelining
Some algorithms are not able to output results even as they get input tuples
E.g. merge join, or hash join
intermediate results written to disk and then read back
Algorithm variants to generate (at least some) results on the fly, as input tuples are
read in
E.g. hybrid hash join generates output tuples even as probe relation tuples in the
in-memory partition (partition 0) are read in
Pipelined join technique: Hybrid hash join, modified to buffer partition 0 tuples of
both relations in-memory, reading them as they become available, and output
results of any matches between partition 0 tuples
When a new r0 tuple is found, match it with existing s0 tuples, output
matches, and save it in r0
Symmetrically for s0 tuples
Database System Concepts - 5th Edition, Aug 27, 2005.
13.51
©Silberschatz, Korth and Sudarshan
End of Chapter
Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
Figure 13.2
Database System Concepts - 5th Edition, Aug 27, 2005.
13.53
©Silberschatz, Korth and Sudarshan
Complex Joins
Join involving three relations: loan
Strategy 1. Compute depositor
(depositor customer)
Strategy 2. Computer loan
customer.
Strategy 3. Perform the pair of joins at once. Build and index on loan for
loan-number, and on customer for customer-name.
depositor customer
customer; use result to compute loan
depositor first, and then join the result with
For each tuple t in depositor, look up the corresponding tuples in customer
and the corresponding tuples in loan.
Each tuple of deposit is examined exactly once.
Strategy 3 combines two operations into one special-purpose operation that is
more efficient than implementing two joins of two relations.
Database System Concepts - 5th Edition, Aug 27, 2005.
13.54
©Silberschatz, Korth and Sudarshan