صفحه 1:
®10GEO010 808060:
6800006687 068086040 686680680 )۵00(
PRIMGRY GIOLOGICOL BEROGOL PORMOLES
(OCP)
صفحه 2:
TLE IDPORTOOCE OF OREGO1C 600۵860
م0 مهو 0
10 PSE. My SM enbugh UK eestg U
سس ا سدع رتم
ورة ی 6 é € e =
موه 28m! و
Som’ 230m) Mya) tuo
“toot
+ Orqucie wutertd courbes CO-BO% oP he tote Pray ervel oxwy of vata cotta [Serres cd
سای( میت لس d., COOP] ond ew wrk a 9090 tu he teoprd 4 لممف<) 1998 روما
(O89; (O90; Oras et d., (OOO; (OOO; Robert et d., SOO له wand Onvtzry, (O9P; Dube
صفحه 3:
63800210 06800 60860۵60
صفحه 4:
Oko we secondary or<pric ueroscl?
» Wow de we wodtel GOD? Obst ore the esttevated yobal
سعط
wervsel particles? ادجو سانننا Okat are pricvary
QOkat do we thick drives these ewissicus?
Okat ore the choheages fa vederstocdiog biogeuio pryeciz dervsol
لیا
wight GOO ocd POBP be oPPevted by chevote chore? نصا
صفحه 5:
698000006867 00۲608010 BEROGOL 0۵
[|
Over 500 reactions to describe the formation of SOA precursors,
ozone, and other photochemical pollutants [Griffin et al., 2002;
Griffin et al., 2005; Chen and Griffin, 2005]
صفحه 6:
0۳۰۵ (ew)
اه
(۵00 رف مسا
صفحه 7:
)386/666۲/۲۳1۵۷۸۵ ۳0۲۳۹۲۳۹۵۵۹۵ ۲
.و مه حي دهن + 000
[Packew, (OOF)
اوح واه vapour prevourr, OO, =wolevuer wet oP = گم رس هب2 داوس م2
oePPrtedt tt prqacts phase
صفحه 8:
O10 0005 66 10۳00۳0۵۲ 8006 087
نس سل
(CsHeY 01. @xovspheric (Bbvenkrae ۵
Chewird reurtviy .©
Monoterpenes(C,,H, 9. Phe ver prevour (or
1 6م O okay) OP te proces
Sesquiterpenes (C,,H,,)
۱ ۱
اوه 2 CO®-prevusers موم وله
(ewtevire wre (Dx sorter)
é =
7 ==
صفحه 9:
CODPOR1MG 606 ۳0۵۵۵
COCPR (90 Cwevew (Prowaee) ond
001 (eoprew/Dowerpres)
SOA pot (153%)
Og varktion: ۷26
تسس Krol xt d., GOOS
(Phote-vnickaton (OL): Y=0.0-9%
Orewa: Oy x d., COO?
‘Lig DOx: =P-CO%
bow WOx: Y=90-90%
9
صفحه 10:
امه موس توطل وه Oko oe
2 Wow do we wodtel GOB? Obst we he estccded yb
bracket?
Okat are pricvary ادجو سانننا wervsel particles?
QOkat do we thick drives these ewissicus?
Okt ore the choheoges tr uerderstardtay biogeuie امه مر
لیا
wight GOO ocd POBP be oPPevted by chevote chore? نصا
صفحه 11:
09661۵6 ۵06: 06/۱۵/۲۳ ۵۲
(PPPROCO #0)
* Ooknt wevkatstc description of chewy coupled to partiva.
* Copies hundreds oP seve und rewire (ey. Dsster Chewrd Devkwiow, Leeds).
* OB ea recotoas and roles have ot brea جمس حوب but are exiropokted Brow kaowa chews
(by xrdoxy).
)اه و موی 9060609 xan: TORO
| | دبس
coronation (a?)
‘These whore previwly Poud tro hey weeded طا erewes portiooay by o Pastor oP O-
60 wth te O00 te wack wow GO® Porwatod ot the BOP LORE امه
[vokwsrs of ot, COOP; COO].
صفحه 12:
MOOELIDG GO@: C-PROMOOT MOMOEL
(®BPPROCOCH #C)
۰ اه لس سس [oe
اس و0۳ و سلجم coed
© باس سحاد
«0129 بسع ساسع أططااير
(a's (Cs) اه ره سس
مادم ان ۳ | @xudirrsn (Cow,)
اسلا ببس مد لو( > bv P(POO)
وطح
@xccopbe: Biot bucket oP bexecir GOD
hee سس = اس
ا
نورد
سعد os
Poa re
وود at
مس tt
son ais
606 Brow wowerpres, seeuiterpeus wd OO0Or esterded to code ~18% of OB
burden
رامیت امه بسن 0000(
صفحه 13:
0۵۵60۵6 ۵0۵6: و۵۵81 ۷ راون GET
(®PPROCC'1 #9)
* Gxpoed he O-produnt wodel to ovasider weep uokatliy “bree”
* Olows chewisiylphysics te wove oryunic woter uboy موه و > physicaly otracive
* Loss oF ch 1 ره photos هلو له طلست ان خام هی Pr 1
(6000 سس ۵ تمسق وم مه هو ۵ إن
| ما
logt0 0" (ug m4)
وس رام
۴ < سس عون مهو Observed O (Hg
[۵000 ره مسا [60006 ,امه ]
صفحه 14:
0۵68601۲ 661۲106۲۵۵: 62۸۵006, ۵6066/۲۳۵ 6
esos orn 0 )6000(
SOA (monoterpenes) SOA (isoprene) SOA (aromatics)
ِ هد 3
= om a0] امه
Ee 0 soo
3 3 vom
x. m0 00 1
vate Late tate
:۳۳۳ patna TSENG ET pao) 7555553: poco
[Medd ot ., ODO}
®COC6-Ohew wodel yobd goad budet
600 مدمه
Daye
مومت ane
Dower ممعم ee ۳006 سر 90-400 مسب
Oroquierpres 6.0
عستم 9 606 - 06401 oF O© sowrve ts woes
تم os ) (صصيصط بادك
700 80.98
موه زوم سییر
صفحه 15:
امه موس توطل وه Oko oe
امجاصل تفه عطا تب( ۵0)09) اصلرت سب ملک بنصياك .
۳
. Oko we pricey bidbycd usrvsdl particles?
QOkat do we thick drives these ewissicus?
Okat ore the choheages fa vederstocdiog biogeuio pryeciz dervsol
لیا
wight GOO ocd POBP be oPPevted by chevote chore? نصا
صفحه 16:
۳6۳۱006۲۷ GIOLOGICCL BEROGOL
P@RMOLEGS (PCCP)
deenicke [BOOS] annpsts way be we kiree a source oe dstlsed st (DDO Poly)
Oa wt oe COO ard 10 [Det et ol, COO1; Barer-et ., 6005: رصم
6006[
صفحه 17:
POOP: PREGEOT-TLROOELOOT TLE
YER, 1D 20۲280 BOO RORGL 8
4 O87 Crrenny (19801888)
مس اب اوه رس 0.2 > Portes ۳
de
3
۳ لح :یی موه و(
POOP # Praton = S-GO%
ماس 5
Nerche, COOS]
صفحه 18:
۳8666: 666۲۲۳۹۵۷۵ 6060686 TLE GILG
RADE
2
16
6
1
16
۳2
0.0100
ماک وال
1۳۷۳0
تست
—Orllular
وملعم 2 0:10
۱۳۹ 0 ۳۷۳۵ 4۳40
سل ,لسن
وی | 0 لت مت بو
ای رس مس مشاه مسر
ov) ( و
امه
Prove Der Dende (مل لساطامو)
صفحه 19:
)20010
بسا ال aerosol Pro وی و۳
wih sea spray, اوه لبون
porretated wi periods of bickyical actviy.
Chlorophyll concentration (mgm)
[O'Onurd et ob, EOE]
صفحه 20:
امه موس توطل وه Oko oe
امجاصل تفه عطا تب( ۵0)09) اصلرت سب ملک بنصياك .
۳
Okat are pricvary اس انوسی اموماتا #(
. Okt do we thick drives these ewes?
Okat ore the choheages fa vederstocdiog biogeuio pryeciz dervsol
لیا
wight GOO ocd POBP be oPPevted by chevote chore? نصا
صفحه 21:
1۲ 0161/۲ 00۲10۵ 6
01881000000004
موس موه و6 <
> Own PPent rebwr (ouPee boukr),
Prony Por وه باس
* Cours = vewprion, vol, devote,
water
> Cractnter rebwer (e.<, sorry)
2 لاه( هسلج41 2.x.
pporeetookds موه رل له و
,صار مور texte wily
۹
صفحه 22:
امه موس توطل وه Oko oe
امجاصل تفه عطا تب( ۵0)09) اصلرت سب ملک بنصياك .
۳
Okat are pricvary اس انوسی اموماتا #(
QOkat do we thick drives these ewissicus?
امس وم يا بل موی و Oke we the chofeages .
barkpts?
- Wow wight GOO ocd POBP be oPPevted by chevote chore?
صفحه 23:
DEGEOR10G OC 10 1۳۹۱۷۶ ) ۳ 00
0 و ب)) طوجو و مز لول عمج موس 0 00 ot ot. [PDDE]: cver مسلسو را
coterted ta Loodod, Pookrrd
016۵۵۵۵: ۳۰ مه saute oP cowpounds ches Ped we orqnic verbo, witout
عصكام صب جما مس( وله
3-80
صفحه 24:
IWTERPRETIOG OREGOO1C 8660680
OEGCOREDEDTG
CLOWCOGE: owe O8 wewrured, vos we soporte PO und GOB?
Croke Prow Picbury Or Qudiy Cty [Onbadks of اه 6006
5
Undenuded OC
Q:—Qr (ag Cim’)
مالس صا براه
Undenuded EC, Q, (g/m?)
ام
هه ۲ سس موه 20/00 pheagey +
وی و sixty DP *
CO =ebrwrctd rarbon (drool pwtevies ریات privorty Posed Purl)
صفحه 25:
IDTERPREMOG ORGOO1C PEROGOL
۵
ی BOR POORE TES. {QQG)
dia مهس یی
wht OP: krborwbon whe PP: ogreoted
امیس پر أموصحه مب حلا
< 00 > COB
]2009 ,لك بس [Ghoo
صفحه 26:
GCOLEG OF OE®GOREDEDT
Above-Canopy Flux
Measurements
Oxidation
Experiments & In-
Canopy Gradient
Branch
Enclosures:
Actual Emissions
4
QO Escape
¢ d
1 p Emitted
Coartesy: Pata Lee (Berkely, ww EPO)
صفحه 27:
OIGPERECOEOT 687۳660 OOOELE GOO
O®GEROOMOVOG
TORCH 2003 — NEAQS 2002
UK PBL ۰ US PBL
t
$ ACE-Asia 2001
MCMA 2003 free tropospher:
polluted urban
measured = modelled
0.1 1 10 100 1000
Photochemical Age [hh]
4. Orwuewrws we chung, camp! doknich POD & GOO, toey awh w volevion
ب موه سا چم هه مسآ
©. Ondeb we vkopiPed بدم) تست 9 prochot wel)
9. Dorel we bused oa kb cts (eppiodbhiy ty wobec voi?)
] كانت ef oh, 2OOO]
صفحه 28:
امه موس توطل وه Oko oe
امجاصل تفه عطا تب( ۵0)09) اصلرت سب ملک بنصياك .
۳
Okat are pricvary اس انوسی اموماتا #(
QOkat do we thick drives these ewissicus?
Okt ore the choheoges tr uerderstardtay biogeuie امه مر
لیا
» Wow wrt GO® und POCP be PPevied by chord change?
صفحه 29:
Get Ready to Itch and Sneeze
Awarmer planet could mean we'll suffer more (and stronger)
allergies.
Paul Toime
NEWSWEEK
From the magazip issue dated Aug 11, 2008
449 one of 40 milion Americans who suffer from hay fever, Lew/s Ziska carries an inhaler in his,
Docket and takes a whiff to clear his lungs on bad allergy days. But hay fever is more than a
personal-health issue for Ziska. A weed ecologist with the U-S. Departivent of Agriculture's Crop
‘Systems and Global Change Laboratory, Ziska is 9 leading researcher in the fledging field of
allergies and climate change. His findings regarding ragweed, an invasive plant whose pollen is
the leading trigger of fall hay fever, are nothing to sneeze at. Global warming and increased
atmospheric carbon dioxide from burning fossi fuels appear to supercharge the growth of
ragweed. And not only does ragweed grow larger and produce more pollen, its poten is more
allergenic, studies show.
People allergic to ragweed arent the only ones weho'l be sniffing more. Studies show that
increased CO2 levels increase the level of tree polien, a common source of allergies in springtime.
‘There's evidence that warmer temperatures in Alaska have led to increases in yellow-jacket
stings, bad news for people with bee-sting allergies. Not even your basement will be safe: fungal
spores also proliferate in warmer temperatures and thrive when carbon-diowde levels rise
صفحه 30:
WOO O1IGLT 100880410 008 01۸/۵80 1 ۶
POTORE?
صفحه 31:
LOG: ۳86006008 00 ۳۹۱۸۷۶
Oberg werperd burded Reve clunt/previpickewied depoeticn اجه
recdaica > chantry GOO svwves (BOO)
Chrere Didkener, DOOR
BIOGENIC AEROSOL:
SECONDARY ORGANIC AEROSOL (SOA)
PRIMARY BIOLOGICAL AEROSOL PARTICLES
(PBAP)
THE IMPORTANCE OF ORGANIC AEROSOL
Sulfate Organics
[Zhang et al., 2007]
• Organic material contributes 20-50% of the total fine aerosol mass at continental mid-latitudes [Saxena and
Hildemann, 1996; Putaud et al., 2004] and as much as 90% in the tropical forested areas [Andreae
and Crutzen, 1997; Talbot et al., 1988; 1990; Artaxo et al., 1988; 1990; Roberts et al., 2001]
ORGANIC CARBON AEROSOL
Cloud
Processing
SemiVolatiles
Aromatics
Nucleation or
ReversibleCondensation
Secondary
Organic
Aerosol
Primary
Organic
Aerosol
Oxidation
by OH, O3,
NO3
Monoterpenes
Isoprene
Sesquiterpenes
Direct
Emission
Fossil Fuel
Biomass
Burning
TOPICS FOR TODAY
1.
What are secondary organic aerosol?
2. How do we model SOA? What are the estimated global
budgets?
3. What are primary biological aerosol particles?
4. What do we think drives these emissions?
5. What are the challenges in understanding biogenic organic aerosol
budgets?
6. How might SOA and PBAP be affected by climate change?
SECONDARY ORGANIC AEROSOL PRODUCTION
VOC
Emissions
Oxidation
Reactions
(OH,
O3,NO3)
Nucleation
Growth
(oxidation products)
Condensation on
pre-existing aerosol
Over 500 reactions to describe the formation of SOA precursors,
ozone, and other photochemical pollutants [Griffin et al., 2002;
Griffin et al., 2005; Chen and Griffin, 2005]
Dp (nm)
FINE PARTICLE GROWTH AT BLODGETT
Nu c l e a t i o nFOREST
Bu rs t o n 1 0/6/01
4
2
“Banana Plot”
100
8
6
4
2
10
279.0
279.2
279.4
279.6
279.8
280.0
Day
-3
d N/d lo g (Dp ) (cm )
0
2000
4000
6000
8000[Lunden et al., 2006]
GAS/PARTICLE PARTITIONING THEORY
VOC + oxidant P1, P2, …Pn
M0 = pre-existing
OC aerosol
A1,A2,...,An
G1, G2, …Gn
Absorptive
Partitioning Theory
Komi,
Ai
RT
o
Gi M0 p i MWom i
[Pankow, 1994]
R=gas constant; T=temperature; p0i = vapour pressure, MWom=molecular weight of aerosols; i=activity
coefficient in organic phase
WHICH VOC’s ARE IMPORTANT SOA PRECURSORS?
Isoprene (C5H8)
Monoterpenes(C10H1
6)
Three factors:
1. Atmospheric Abundance
2. Chemical reactivity
3. The vapour pressure (or
volatility) of its products
Sesquiterpenes (C15H24)
Anthropogenic SOA-precursors = aromatics
(emissions are 10x smaller)
COMPARING SOA POTENTIALS
M0
Y
HC
Terpenoids: Griffin et al., 1999:
Photo-oxidation: Y=1.6-84.5%
NO3 oxidation: Y=12.5-89.1%
O3 oxidation: Y=0-18.6%
Isoprene: Kroll et al., 2005
Photo-oxidation (OH): Y=0.9-3%
Aromatics: Ng et al., 2007
High NOx: Y=4-28%
Low NOx: Y=30-36%
EDGAR 1990 Emissions (Aromatics) and
GEIA (Isoprene/Monoterpenes)
Species
Global
(Tg/yr)
Aromatics
Benzene
Toluene
Xylene
Other
21.7
5.8
6.7
4.5
4.7
SOA pot’l (15%) 3.2
Monoterpenes
130.6
SOA pot’l (10%) 13.1
Sesquiterpenes
?
SOA pot’l (75%) ?
Isoprene
341
SOA pot’l (3%)
10.2
TOPICS FOR TODAY
1.
What are secondary organic aerosol?
2. How do we model SOA? What are the estimated global
budgets?
3. What are primary biological aerosol particles?
4. What do we think drives these emissions?
5. What are the challenges in understanding biogenic organic aerosol
budgets?
6. How might SOA and PBAP be affected by climate change?
MODELING SOA: EXPLICIT CHEMISTRY
(APPROACH #1)
• Using mechanistic description of chemistry coupled to partitioning.
• Captures hundreds of species and reactions (e.g. Master Chemical Mechanism, Leeds).
• Often reactions and rates have not been measured but are extrapolated from known chemistry
(by analogy).
Example: TORCH 2003 campaign in rural UK
To get this agreement:
1.Add 0.7 µg/m3 bkgd
2.Increase partitioning
coefficients by factor of
500
[Johnson et al., 2006]
These authors previously found that they needed to increases partitioning by a factor of 580 with the MCM to match aromatic SOA formation at the EUPHORE chamber
[Johnson et al., 2004; 2005].
MODELING SOA: 2-PRODUCT MODEL
(APPROACH #2)
• Unknown products, so lump
products into 1=high volatility and
2=low volatility
• Fit yields/partitioning parameters
(’s K’s) from smog chamber
observations
•Used in most global/regional
models
SOA parameterization (reversible partitioning)
VOCi + OXIDANTj i,jP1i,j + i,jP2i,j
Gi,j
Pi,j
Equilibrium (Komi,j)
also f(POA)
Ai,j
Example: Global budget of biogenic SOA
SOA from monoterpenes, sesquiterpenes and OVOCs estimated to contribute ~15% of OA
burden
[Chung and Seinfeld, 2002]
MODELING SOA: VOLATILITY BASIS SET
(APPROACH #3)
• Expand the 2-product model to consider many volatility “bins”
• Allows chemistry/physics to move organic matter along a continuum physically attractive
• Loss of chemical identity complicates estimates of “mean molecular weights” and radiative forcing
Example: PMCAMx (summer 2001)
volatility
C* = saturation vapour pressure
[Donahue et al., 2005]
[Lane et al., 2008]
CURRENT ESTIMATES: GLOBAL BUDGETS OF
Annual mean zonal distribution
SOAof SOA (2000)
GEOS-Chem model global annual budget
[Heald et al., 2008]
SOA Production
Tg yr-1
Isoprene
14.4
Monoterpenes
8.7
Sesquiterpenes
2.1
OVOC
1.6
Aromatics
3.5
TOTAL
30.3
[Henze et al., 2008]
POA Emission: 50-100 Tg yr-1
SOA ~ 25-50% of OA source in models
(mostly biogenic)
TOPICS FOR TODAY
1.
What are secondary organic aerosol?
2. How do we model SOA? What are the estimated global
budgets?
3. What are primary biological aerosol particles?
4. What do we think drives these emissions?
5. What are the challenges in understanding biogenic organic aerosol
budgets?
6. How might SOA and PBAP be affected by climate change?
PRIMARY BIOLOGICAL AEROSOL
PARTICLES (PBAP)
BACTERIA
VIRUSES
POLLEN
FUNGUS
PLANT
DEBRIS
ALGAE
Jaenicke [2005] suggests may be as large a source as dust/sea salt (1000s Tg/yr)
May act as CCN and IN [Diehl et al., 2001; Bauer et al., 2003; Christiner et al.,
2008]
PBAP: PRESENT-THROUGHOUT THE
YEAR, IN URBAN AND RURAL LOCATIONS
Mainz, Germany (1990-1998)
Particles > 0.2 m, stained with protein
dye
No clear seasonality: multiple PBAP
sources
PBAP # fraction = 5-50%
Lake Baikal, Russia (1996-1997)
[Jaenicke, 2005]
PBAP: PARTICLES ACROSS THE SIZE
RANGE
1.0E+1
3
d V /d l o gd , µm /cm
3
200%
180%
160%
140%
120%
100%
80%
60%
40%
20%
0%
1.0E+0
Tot al
Cel l ul ar
1.0E-1
1.0E-2
1.0E-1
Fract i on
1.0E+0
1.0E+1
1.0E+2
Di a me t e r d , µm
May also make
important contribution
to fine mode
aerosol
Dominates the coarse
mode (pollens, debris,
etc)
From Andi Andreae (unpublished data)
MARINE PBAP
WIND
Sea-spray emission
of sea salt (and OC)
Surfactant Layer (with Organics)
Primary marine aerosol from “bubble bursting
mechanism” associated with sea spray,
correlated with periods of biological activity.
Ocean
Mace Head, Ireland
Chlorophyll A
[O’Dowd et al., 2008]
TOPICS FOR TODAY
1.
What are secondary organic aerosol?
2. How do we model SOA? What are the estimated global
budgets?
3. What are primary biological aerosol particles?
4. What do we think drives these emissions?
5. What are the challenges in understanding biogenic organic aerosol
budgets?
6. How might SOA and PBAP be affected by climate change?
WHAT MIGHT DRIVE PBAP
EMISSIONS/CONCENTRATIONS?
1. Wind
Atmospheric release/dispersion
2. Temperature
Can affect release (surface bonding),
proxy for growing season?
3. Biological activity
4. Vegetation cover
Stimulates source
Source = vegetation, soil, decaying
matter
Facilitates release (e.g. spores)
5. Humidity / wetness
6. Anthropogenic Activity
Industrial/municipal facilities e.g.
spores/molds in old buildings, sewage
treatment plants, textile mills
[Jones and Harrison, 2004]
TOPICS FOR TODAY
1.
What are secondary organic aerosol?
2. How do we model SOA? What are the estimated global
budgets?
3. What are primary biological aerosol particles?
4. What do we think drives these emissions?
5. What are the challenges in understanding biogenic organic aerosol
budgets?
6. How might SOA and PBAP be affected by climate change?
MEASURING OC IN THE ATMOSPHERE
Hamilton et al. [2004]: over 10 000 organic compounds detected in a single PM 2.5 sample
collected in London, England
CHALLENGE: To measure suite of compounds classified as organic carbon, without
artifacts from the gas phase
Ambient Air
Denuder to
remove gas-phase
organics
Quartz
Filter (#1)
Backup (#2)
(to capture OC
evaporated from
filter #1)
Thermal Optical
analysis to determine OC
Concentration
INTERPRETING ORGANIC AEROSOL
MEASUREMENTS
CHALLENGE: once OA measured, can we separate POA and SOA?
Example from Pittsburg Air Quality Study [ Cabada et al., 2004]
EC/OC ratio for primary
emissions are well-correlated
(triangles).
Deviations from the slope
are indicative of a secondary
OC source (squares).
Uncertainties:
• changing EC/OC emission ratios for sources
• mixing of air masses
EC=elemental carbon (direct emission only, primarily fossil fuel)
INTERPRETING ORGANIC AEROSOL
MEASUREMENTS
AEROSOL MASS SPECTROMETER (AMS)
m/z 57: hydrocarbon
like organic aerosol
POA
m/z 44: oxygenated
organic aerosol
SOA
Reduce complexity of observed spectra to 2 signals:
~2/3 of OC is SOA
(in urban site!)
[Zhang et al., 2005]
SCALES OF MEASUREMENT
O
Escape
d
+ O3
Oxidation
+
Products
OH
+ O3
+ O3
Reacted
Emitted
Above-Canopy Flux
Measurements
Oxidation
Experiments & InCanopy Gradient
Branch
Enclosures:
Actual Emissions
Courtesy: Anita Lee (Berkeley, now EPA)
DISAGREEMENT BETWEEN MODELS AND
OBSERVATIONS
1. Measurements are challenging, cannot distinguish POA & SOA, issues such as collection
efficiencies, artifacts can be important.
2. Models are simplified treatments (e.g. 2 product model)
3. Models are based on lab data (applicability to ambient conditions?)
[Volkamer et al., 2006]
TOPICS FOR TODAY
1.
What are secondary organic aerosol?
2. How do we model SOA? What are the estimated global
budgets?
3. What are primary biological aerosol particles?
4. What do we think drives these emissions?
5. What are the challenges in understanding biogenic organic aerosol
budgets?
6. How might SOA and PBAP be affected by climate change?
HOW MIGHT BIOGENIC OA CHANGE IN THE
FUTURE?
Cloud
Processing
SemiVolatiles
Aromatics
Oxidation
by OH, O3,
NO3
Monoterpenes
Isoprene
Sesquiterpenes
Nucleation or
ReversibleCondensation
Secondary
Organic
Aerosol
Primary
Organic
Aerosol
T, Mo
Direct
Emission
Fossil Fuel
Biomass
Burning
PLUS: FEEDBACKS ON THE BIOSPHERE
Changing aerosol burden affects clouds/precip/chemical deposition and
radiation changing SOA sources (BVOC)
Change in Emissions:
-4510 g m-2 h-1
to
5174 g m-2 h-1
Christine Wiedinmyer, NCAR