صفحه 1:
010 رک ی ON
OES rac
4 سم ل
4000 OeAd ices
5۰۱/۹۹۵
صفحه 2:
Oberives ور
۱ ل eaccd
0 eariicz
< صصجصوصم اشردمی وله رها عاسجو()
(ODO ا aU PAC EASA}
NON Ne Nera GI= Pee PAL PACE, C1 a ELD ANI Et CIC IPAC IRS EASI NSCS
۱ can eteas tas inn eas Smeal eas eg Peed enced
(CO ور مر
صفحه 3:
Oberives ور
2) ۰
۹
4 easiness Dress! ت
۱۱۳ من در رز Ear
کی
eles era ese Oe) Cp) ۱۹
صفحه 4:
رح( 2 ور ۱
ل
م ل ل ل ۱
7
OAc ae ل A Oe Na cS
ار رز ۰ Dez ance
CARS A Dera ل ال 0ك
eect ows eben er era ee bicd casera ice
اك aU ec eae Ae BESTE
ا ا teat a CL bce Cod (ECCS ل
product. Ousppare itty Oracle Retail (see
DALE وا
Orive دص
صفحه 5:
Oveniew
6 مس بر مسر را
۹۱ ال ل ل
NU AAS ا 7
021 رمرم ood
7
صفحه 6:
ANU cathe Dr (®@) تشرط
صفحه 7:
Pke Oustess Paabics (BO) Piet: Oa
Overview
22ص مسر OO toe:
Oa ed Ye اش
٩ ۳۵۵۵
رو Oube umipsis
۱ ea یت مس
ا رو ور رح
۹۳ ا ار
صفحه 8:
ANU cathe Dr (®@) تشرط
صفحه 9:
Overview
> OC's cossficaive oP strategic euerprise
بسح مت
مر مرس سم ا
Operative
07 دمصي
ea وت
صفحه 10:
Oveniew
مسر مر ملس بر مرس تسا VO
ام مرس
مصعم لاجد ررعرة سا صصعووت لیم زور۳
مر ل ا ا ۱۱
0000
ا کی سس سس ۶
EASI=a دمم رد دی ةا
CLIN asleacat aU CLM ا ل ا
صفحه 11:
Overview
> Orikbwea
رم 0ك (EAN
Piodiog 2 ا ل ی
رصم امرس را
صفحه 12:
ا م ۵
را رتسم لس سس سر
CN ا ل ca ce
TE ane fact (ml OOM rane Ure ری مر
Sesh 0 cs EA EAS را مر سل رم للك
ما
در زر ۱
IN AION eae ecuea nese
مر رد زر مر
صفحه 13:
۵ | eee eg ORC CD]
> OLOP versus OLTP
ل از ا
neat
OC ie ری PARIS EAS
7 7ط
0 ا ا ا eile be cL
0 ر ا ا
OUT کر در ا ا
صفحه 14:
Qepors und Quertes
> Reports
0 Cs eaten rie
© Od hor (or verdeovaend) reports
© تنل( support
Seas ار CN ELAS acd
ا ار ۱ ۶
أداصدجاعيم! نوه جأتخحصهجاا دمشنجاصعاك اعرصمرج ةا
وم جأسعك لججوج ماكو روه جه اأعس جد وصاادر وجل Se ee
a SCE Nee ca
Qucwair vooteut persvoaization,
صفحه 15:
Qepors und Quertes
6 ندعب راز
4 ACNE EAN El es OLNCLEAC Dia eee ted
NE EASES Ean nie UA اس و
© Ginutured Query bop (GAL)
6 ار در را مت رت زر Ea fee
دی رم زک من سم
ی رن رم ۱۹ Ge
صفحه 16:
(۳ rican cr eas) Bd
LONG ences ae,
ie] یر روت ee ye Pace by eric oe BRS ane ا 3ك
by severd dipeusious, suck us sules by nexion,
by product, by sulespersva, ood by teve (Pour
۳
Se ee
رز( با
سم( ۷
۱ (7
صفحه 17:
(2 serseaseg case UZ
سم ای مر را ۶
ام CON
RS NL یت رصم
Daca ری ۱
2 )(۵ علی
۹ h Cg 0 tc -
ار مرو و رت و رای مرول tee
Se sf fees eae CANIN EAC A ee ELS eer]
صفحه 18:
(2 serseaseg case UZ
9
5 أدكاز لمك لعواعم رهز برأكاكا ات اعوجانك 09
DANS EAN Soe عواجابومج ما جعموسن 2 رز Tes
۳۵۵7 رعس لصم ۲ 5۱۲7۷ حانج 0 10
ANSEL a Zc LNA cal (cS 0
LCA recs ca clara Bee ا ل 0
ار رت سر تم cr oe ne و 00
7 "۱717۳17171171 ۲0 17۳1
صفحه 19:
Nuts Sorews Boks Washors
Products (P)
use Sorows Bote Washers
0
صفحه 20:
(2 serseaseg case UZ
مر مر COO reat
و ماه وروی هلال OL رن و
رت ار 2 FAS
rcs ار
اک 5
صفحه 21:
ANNI
سس
0
SSS
لس
PAR
Analysis Cubes
صفحه 22:
(2 serseaseg case UZ
0
ASC 7 ك0"
EAI | CASS ISIS Ne Cac red لجمتى تدك هد حمجاا بكممما TCAs, ACL ELLER =A
cL] تم ی( و
ce لمم أدوم ادامر
0 ا ص
ee CLASS ا ا ca
Net Bee ea cca AC IR SPAS ha EAS SSI EANS ANSE Mees
هم م۳ EAS Cec
صفحه 23:
6 (pase eer
a wedi ted ی
لكا
سس سس انا
صن ا Oe Ace ese
یت لد ی سس مد ی
Dea a ashe fd DS cecal CL ca PANS Cac CAS ca ANN
موس ۱۳۸
eae seh eee ا ا ا 0 a
صفحه 24:
“طناك للك حار كان () 2
0 71 ی 000
5 اوه مس اه نع لت تنل
VA cans) cans PAs ean Da ۳ رس ره ۶
ی
ed و رت دص ی رز رت رز وا
اد لاح رو ل ا امد مد
1 ۱ ۱۳/717۹
رما
صفحه 25:
ا
9 0 ا AO Pac cast
ل 0 لي
ا ا ا ا ان g
ا ال كينا
es =e ۱
صفحه 26:
هیر رگ را
Visual Spreadsheet of Risk Analysis
"سردا
صفحه 27:
صفحه 28:
ا
6 مسر سح مراک
۷ سم لس مسر را
0
00 PEED SA Ns rissi Rca cscr/ eae Pie la cin pases he csreom
تسس سبط رس ری را
0
۹ ۱
ل ل م مر رد رام ۳
صرحت . (دك (1) سد »)سجرب 1 در ۱۹۳
پر ا ا ۱ ۷
صفحه 29:
ee ور
کر ور مر م۹
ار 7 ۱۹
مر مت سم
ae مر ۱ Tee eS cles oe
صفحه 30:
ور ee
کر ور مر م۹
AEs PASE ea aca NN | Pca EL La Pa ca دادما Os O16 >
ا ا ا 0
:له ع مدلل جا Ne eS
ات مه م۹ 0
ام و سم
ل ل ere ca VANS
etme PA crac وان ما ور را ۳ ۰۱
صفحه 31:
ور ee
کر ور مر م۹
سارت ها
عا مدمه وونل CART, Em لصص وه ورن ۳18) ۰
ل 0
Oe ae ant cee ca ce
ا
تمس م۱۱
و سس سمل سا
سر ور مرا
CLT تم مرا وا
PAS EAC ENING fa Es ELLER LEASE و
صفحه 32:
ee ور
٩ مس ورس رمرم (616)
* O16 cowbiced wits BPG
* Clobdl posticaicny systews (BPG)
ee carom ی cca CA AC canceled ed
۱ eer AS CASS خام casa (can عه جوت
رم ا ا ۱
مس مر
صفحه 33:
ور ee
کر ور مر م۹
اه لصو عدا لحه 18 2
neice اک ی مت ل مراک وا
مت 0
مت مه 051086 ٠»
ام سم سم
ا ل ا رت وا
0
ual iciecl eee) کر
7.7 ۱7-2 7(
صفحه 34:
1 ناا
دص ار ۱ Vad ed acc fc Pac a CoA
طح رت رپ رم ما
ا ۱
VON ar ae nod aU canis ie aera ا
۱ را خر i pperoiocdl aed ا sv
CSUN مر (PLO pe eres رد ار eset cad
NAN ce acai ASEAN CAN CZ ea EASICa
صفحه 35:
ل 0
Oreck: ا
0 ا و
ال ل 7
دم د
Fee aA aa cea ARTA PA CAINS TAS Rae nc ace eae
مر در ۱
a VAGINAS SV Cacsca cecal ee ل ال دوک با
Taal rast rime (EOD Coy = aiesereee
صفحه 36:
۹ رت cd Dc Ak Desai pect Ne لس تس
0
66 م جاع( عا مجك( ۶
2-0-3382
زر( ec
ere acres cy ees icra oe Na aS ae fe AN cad
صفحه 37:
®@ uad the Orb: Orb Teteligeare cart
Orb @udlpics
۶ ٩ رب مرحم ر
4 اک رب ied
۳ TH.
۶ ۹ دسر سر سم ر
نز۱۱۱ untiviies cord
FUNDA nea racial cA a Ez ACCA (cea Pe LEAN
Cen aed Via Ea DU ea be aci cioe Koy trary)
صفحه 38:
Shot om ۵ ۳ Vi مسب
صفحه 39:
Osage, Bruehits,
wad Guovess oF BO
~ Osage <م OD
ا ل ل ل لل ره با
_ ل ا ل ل ۱۹/۹
ا 0 ا ۱۱۳2
دی مت مه لل مر ما( وا
ANNU SLC I ADCS ceca ۱
PAN eas LES ANSNS LEAH DAE PAC =P ceca ۱
uaee cece رب
صفحه 40:
Osu, (ee ay
wad Guovess oF BO
Nocera hae an 0
ره با cceeal (nO) acre
ieee ا eet as
Dr AST CAS SNS esas TAS Cte ica cA ARS SANS CSc
۱ بوجواعمصر جز عععوصت tes fe عاوصس
صفحه 41:
Osu, (ee ay
wad Guovess oF BO
< لها صعصؤصم 0641/0608 روا(
۰ ا ال را mecca
تسم ی رت و بر مر
۱ مب یت مر
ند
ما رز(
صصص یمس هی رم
صفحه 42:
Osage, @ruetits,
NS CAC car (or)
OSC ar aan |
@ back oP shiled (or avalable) مر
5 4 casei (Beers
رن مر Ded ENS. EAS)
ل ا 4 ع 0 307
00 (
صفحه 43:
LC as ae مه(
un Guovess oP OD
Oh O80 proect Pal *
PAs] ا ل ٩۱ ۰
BIA Acie
LO رم رد اک ۱
hac SLE 0
ات ا ane ,2
۱
یت مر ك2 Co
111
صفحه 44:
Osage, @ruetits,
Nee CA رت pe el Cp)
la Gpstew developed ded the aeed Por iotegraiva
0 4 ل ا
» 2 روصتم يهو EU Dc Del عاط بجع تمك وأاولك بعود سردن خات
را ره ل ل pal mrs
كم
Introduction to Business Analytics
Chapter 3: Business Analytics and Data
Visualization
Matthew J. Liberatore
Thomas Coghlan
Fall 2008
Learning Objectives
List and briefly describe the major BA methods
and tools
Describe how online analytical processing
(OLAP), data visualization, and
multidimensionality can improve decision making
Describe geographical information systems
(GIS) and their support to decision making
Learning Objectives
Describe real-time BA
Explain how the Web relates to BA
Describe Web intelligence and Web analytics and
their importance to organizations
Describe implementation issues related to BA
and success factors for BA
Lexmark Improves Operations
with BI
1.
2.
3.
4.
5.
Identify the challenges Lexmark faced regarding information
flow
How were the information flows provided before and after
implementation of the system?
Identify the decisions supported by the new system.
How can the new system improve customer service?
Go to http://www.sas.com/industry/retail/tour/itour_noflash.html
and take the interactive tour of the SAS Retail Intelligence
product. Compare it to Oracle Retail (see
http://www.oracle.com/applications/retail.html) and Oracle
Active Retail Intelligence in particular
The Business Analytics (BA) Field: An
Overview
Business Analytics
The use of analytical methods, either manually or
automatically, to derive relationships from data
Remember that we defined business analytics
(BA) to include the access, reporting, and
analysis of data supported by software to drive
business performance and decision making
The Business Analytics (BA) Field: An
Overview
The Business Analytics (BA) Field: An
Overview
MicroStrategy’s classification of BA tools:
The five styles of BI
1.
2.
3.
4.
5.
Enterprise reporting
Cube analysis
Ad hoc querying and analysis
Statistical analysis and data mining
Report delivery and alerting
The Business Analytics (BA) Field: An
Overview
The Business Analytics (BA) Field: An
Overview
SAP’s classification of strategic enterprise
management
Three levels of support
1.
2.
3.
Operational
Managerial
Strategic
The Business Analytics (BA) Field: An
Overview
Executive information and support systems
Executive information systems (EIS)
Provides rapid access to timely and relevant
information aiding in monitoring an organization’s
performance
Executive support systems (ESS)
Also provides analysis support, communications,
office automation, and intelligence support
The Business Analytics (BA) Field: An
Overview
Drill-down
The investigation of information in detail (e.g.,
finding not only total sales but also sales by
region, by product, or by salesperson). Finding
the detailed sources
Online Analytical Processing (OLAP)
Online analytical processing (OLAP)
An information system that enables the user,
while at a PC, to query the system, conduct an
analysis, and so on. The result is generated in
seconds
Some applications can be found at:
http://www.olapreport.com/
CaseStudiesIndex.htm
Online Analytical Processing (OLAP)
OLAP versus OLTP
OLTP concentrates on processing repetitive
transactions in large quantities and conducting simple
manipulations
OLAP involves examining many data items
complex relationships
OLAP may analyze relationships and look for
patterns, trends, and exceptions
OLAP is a direct decision support method
Reports and Queries
Reports
Routine reports
Ad hoc (or on-demand) reports
Multilingual support
Scorecards and dashboards
Report delivery and alerting
•
•
•
•
Report distribution through any touchpoint
Self-subscription as well as administrator-based distribution
Delivery on-demand, on-schedule, or on-event
Automatic content personalization
Reports and Queries
Ad hoc query
A query that cannot be determined prior to the
moment the query is issued
Structured Query Language (SQL)
A data definition and management language for
relational databases. SQL front ends most
relational DBMS
Multidimensionality
Multidimensionality
The ability to organize, present, and analyze data
by several dimensions, such as sales by region,
by product, by salesperson, and by time (four
dimensions)
Multidimensional presentation
Dimensions
Measures
Time
Multidimensionality
Multidimensional database
A database in which the data are organized
specifically to support easy and quick
multidimensional analysis
Data cube
A two-dimensional, three-dimensional, or higherdimensional object in which each dimension of the
data represents a measure of interest
Multidimensionality
Cube
A subset of highly interrelated data that is
organized to allow users to combine any attributes
in a cube (e.g., stores, products, customers,
suppliers) with any metrics in the cube (e.g.,
sales, profit, units, age) to create various twodimensional views, or slices, that can be displayed
on a computer screen
Multidimensionality
Multidimensionality
Multidimensional tools and vendors
Tools with multidimensional capabilities often work in
conjunction with database query systems and other
OLAP tools
Temtec Executive Viewer
Multidimensionality
Multidimensionality
Limitations of dimensionality
The multidimensional database can take up significantly more
computer storage room than a summarized relational database
Multidimensional products cost significantly more than standard
relational products
Database loading consumes significant system resources and
time, depending on data volume and the number of dimensions
Interfaces and maintenance are more complex in
multidimensional databases than in relational databases
Advanced Business Analytics
Data mining and predictive analysis
Data mining
Predictive analysis
Use of tools that help determine the probable future
outcome for an event or the likelihood of a situation
occurring. These tools also identify relationships and
patterns
Several data mining tools will be discussed later
Data Visualization
Data visualization
A graphical, animation, or video presentation of
data and the results of data analysis
The ability to quickly identify important trends in
corporate and market data can provide competitive
advantage
Check their magnitude of trends by using predictive
models that provide significant business advantages in
applications that drive content, transactions, or
processes
Data Visualization
New directions in data visualization
In the 1990s data visualization has moved into:
Mainstream computing, where it is integrated with
decision support tools and applications
Intelligent visualization, which includes data
(information) interpretation
Data Visualization
Data Visualization
Data Visualization
New directions in data visualization
Dashboards and scorecards
Visual analysis
http://www.lumina.com/software/influencediagrams.
html influence diagrams
Financial data visualization
Tree map examples:
http://www.robkerr.com/post/2008/04/
Favorite-Visualization-2-e28093-ThePerformance-Map-(Heat-Map).aspx
http://visudemos.ilog.com/webdemos/treemap/treemap.html
Geographic
Information Systems (GIS)
Geographical information system (GIS)
An information system that uses spatial data,
such as digitized maps. A GIS is a combination
of text, graphics, icons, and symbols on maps
Geographic
Information Systems (GIS)
As GIS tools become increasingly sophisticated
and affordable, they help more companies and
governments understand:
Precisely where their trucks, workers, and
resources are located
Where they need to go to service a customer
The best way to get from here to there
Geographic
Information Systems (GIS)
GIS and decision making
GIS applications are used to improve decision making in the
public and private sectors including:
•
•
•
•
•
Dispatch of emergency vehicles
Transit management
Facility site selection
Drought risk management
Wildlife management
Local governments use GIS applications for used mapping
and other decision-making applications
Geographic
Information Systems (GIS)
GIS combined with GPS
Global positioning systems (GPS)
Wireless devices that use satellites to enable users to
detect the position on earth of items (e.g., cars or
people) the devices are attached to, with reasonable
precision
Geographic
Information Systems (GIS)
GIS and the Internet/intranets
Most major GIS software vendors provide Web access that
hooks directly to their software
GIS can help the manager of a retail operation determine
where to locate retail outlets
Some firms are deploying GIS on the Internet for internal
use or for use by their customers (locate the closest store
location)
http://www.360networks.com/includes/popups/
rate_center_map/map.asp
Real-Time BI
The trend toward BI software producing real-
time data updates for real-time analysis and realtime decision making is growing rapidly
Part of this push involves getting the right
information to operational and tactical personnel so
that they can use new BA tools and up-to-theminute results to make decisions
Real-Time BI
Concerns about real-time systems
An important issue in real-time computing is that not all
data should be updated continuously
when reports are generated in real-time because one
person’s results may not match another person’s
causing confusion
Real-time data are necessary in many cases for the
creation of ADS systems
BA and the Web: Web Intelligence and
Web Analytics
Using the Web in BA
Web analytics
The application of business analytics activities to
Web-based processes, including e-commerce
BA and the Web: Web Intelligence and
Web Analytics
Clickstream analysis
The analysis of data that occur in the Web
environment.
Clickstream data
Data that provide a trail of the user’s activities and
show the user’s browsing patterns (e.g., which
sites are visited, which pages, how long)
BA and the Web: Web
Intelligence and Web Analytics
Usage, Benefits,
and Success of BA
Usage of BA
Almost all managers and executives can use some
BA systems, but some find the tools too complicated
to use or they are not trained properly.
Most businesses want a greater percentage of the
enterprise to leverage analytics; most of the challenges
related to technology adoption involve culture, people,
and processes
Usage, Benefits,
and Success of BA
Success and usability of BA
Performance management systems (PMS) are
BI tools that provide scorecards and other relevant
information that decision makers use to determine their
level of success in reaching their goals
Usage, Benefits,
and Success of BA
Why BI/BA projects fail
1.
2.
3.
Failure to recognize BI projects as crossorganizational business initiatives and to understand
that, as such, they differ from typical standalone
solutions
Unengaged or weak business sponsors
Unavailable or unwilling business representatives
from the functional areas
Usage, Benefits,
and Success of BA
Why BI/BA projects fail
4.
5.
6.
Lack of skilled (or available) staff, or suboptimal
staff utilization
No software release concept (i.e., no
iterative development method)
No work breakdown structure (i.e., no
methodology)
Usage, Benefits,
and Success of BA
Why BI/BA projects fail
7.
8.
9.
10.
No business analysis or standardization
activities
No appreciation of the negative impact of “dirty
data” on business profitability
No understanding of the necessity for and the
use of metadata
Too much reliance on disparate methods and
tools
Usage, Benefits,
and Success of BA
System development and the need for integration
Developing an effective BI decision support
application can be fairly complex
Integration, whether of applications, data sources, or
even development environment, is a major CSF for
BI